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Abstract: 

Plasma gasification (PG) complements traditional recycling when applied to contaminated or 

mixed plastics. Without PG these plastics cost recyclers more to process than they are worth on the 

market, and sometimes they are landfilled or incinerated instead of being recycled. Plasma gasification 

can take plastic not suitable for traditional recycling and break it down into high-quality syngas for use in 

electricity generation, chemical manufacturing, or hydrogen production. The technology can be 

implemented without changing the behavior of consumers, which is a major advantage over attempting 

to decrease contamination or reduce use of low-value plastic. Due to high capital requirements and 

maintenance costs, a PG facility processing 300 tons/day of waste plastic was found to be profitable 

without subsidies with a payback period of about 11-12 years. However, the cash flow analysis showed 

at 15 years the Net Present Value (NPV) was -$9,159,467.73 with an Internal Return Rate (IRR) of 3.8%. 

The large investment required to commercialize the technology at the scale required may not add 

enough value over the course of 15 years to justify the risk.  
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Treatment of Plastic Wastes using Plasma Gasification Technology 

Intro: 
 

At a time when humanity is experiencing a revolution in green energy tech, our waste 

management systems and techniques are due for an upgrade in sustainability. Recycling is only effective 

at recovering high value products such as metals or some types of plastics with low contamination [13], 

leaving other materials to be landfilled or incinerated. Landfills have been known to leech various 

chemical and organic contaminants into surrounding groundwater [11], and incineration requires air 

pollution control (APC) to avoid dangerous emissions which produces concentrated residues to be 

landfilled [20]. Plasma gasification of plastic waste rejected by the recycling industry can recover energy 

from plastic at the end of its useful life without the harmful reactions of combustion.  

Current recycling behaviors and habits are not effective at producing high value products. Many 

recyclers have transitioned to single-sort recycling, while this is convenient for consumers it results in a 

heterogeneous mix of materials with relatively high contamination rates [23]. These materials are more 

expensive to clean and process which cuts into already thin recycler profit margins [23]. With current 

methods it is possible to economically separate and recycle cardboard, paper, metals, PET plastic (#1), 

and HDPE plastic (#2). However mixed plastics #3-7 are low value and recyclers may struggle to find 

buyers willing to pay more for recycled materials than for virgin materials [2]. As of September 21st 2018, 

mixed #3-7 was selling for under $20/ton compared to $820/ton for HDPE and $330/ton for PET 

[Secondary Materials Pricing]. Table 01 details the prices of post-consumer plastics. At prices this low, 

recyclers are seldom able to profit off the sale of mixed plastics, and some are forced to sell at a loss or 

landfill low value products [9].  

 



3 
 

Table 01 

Plastic Type Number 
Designation 

Price of 
post-consumer 
material in 
December 2017 
($US/ton) 

Price of 
post-consumer 
material in 
September 2018 
($US/ton) 

Price of virgin 
material in 
October 2018 
($US/ton) 

Polyethylene 
Terephthalate 
(PET) 

#1 271.80 330.00 1600.00[a] 

High-Density 
Polyethylene 
(HDPE) 

#2 602.60 820.00 1500.00[b] 

Mixed Plastics #3-7 12.60 20.00 N/A 
 

Table 01 shows the price of post-consumer materials in December 2017 (pre-Chinese National Sword policy), post-consumer 

material prices in September 2018 (both from Secondary Materials Pricing), and virgin plastic prices ([a] – Sound Resource 

Management Group, Inc. [b] – Plasticker Market Report Plastics). Mixed plastics are only created through recycling practices, 

therefore virgin material prices are not applicable.  

With new policies coming into effect in China regarding the quality and contamination of 

imported recyclables, the amount of plastic imported by China fell from 1.23 million metric tons in 

January and February of 2017 to just 10 thousand metric tons in the same period of 2018 [21]. This has 

left a glut of material sorted by recyclers without a buyer. As bales of plastic pile up recyclers have to 

decide between stockpiling plastic and sending it to a landfill [9], and because China accepted about half 

of the world’s recyclables in 2017, it is piling up fast. To make matters worse, global plastic use has 

nearly doubled in the past 10 years and shows no signs of stopping as seen in Figure 01 [25]. Better 

sorting and cleaning could provide an acceptable product to recyclers, but would require either a 

widespread change in recycling behavior or more processing for a low value product. This paper will 

propose an alternative solution to this problem by using PG to process low value and/or contaminated 

plastics. The plasma arc reaches temperatures high enough to gasify both the plastic and any 

contaminants [8]. Although PG can be used to treat a wide variety of wastes ranging from MSW to 

biomedical waste [8], mixed plastic is a great feedstock because it is made up of mostly Carbon and 
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Hydrogen [15]. The resulting syngas is clean relative to more variable gasification feedstocks, which 

lessens processing requirements to remove Nitrogen, Sulphur, Arsenic, and tars [3].  

Figure 01 

       

Figure 01 shows historical global plastic use from 1950 to 2015 with a solid line, and projected usage from 2015 to 2050 based 

on historical trends [10]. 

Plasma gasification is a potentially transformative technology capable of extracting stored 

energy from undesired plastic waste [18]. Plasma gasification can turn a wide variety of feedstocks such 

as municipal solid waste (MSW) or mixed plastics into an array of usable products ranging from 

construction materials [22] to fuels for use in electricity production and/or transportation [19, 17]. 

Plasma gasification works by superheating the waste with a plasma arc to break it down into an inert 

solids, as well as a mix of hydrogen, carbon monoxide, and other trace gases known as syngas [18]. The 

inert solids left over after gasification have favorable leaching characteristics and can be used in the 

construction industry to displace other materials [3]. At this point the syngas can then be burned to 

generate electricity or further processed into different chemical products [8]. Markets for syngas 

produced through PG vary but range from combustion for electricity and heat, processing to synthetic 

liquid fuels, or purification into a hydrogen energy carrier [7]. Multiple markets for high-quality syngas is 

a good thing because it ensures syngas’ value through ups and downs in a single market.  



5 
 

Research Questions:  

1) Can Plasma Gasification (PG) technology complement conventional recycling methods to reduce 

waste and increase profitability? 

2) Could an estimation of profitability be created for a PG facility running on plastic waste in 

California be created? 

Literature Review: 

Plasma gasification is a versatile technology and can be used to process many different 

feedstocks without requiring a homogeneous mixture. The technology can be used to process almost 

any feedstock regardless of biohazards or moisture content by breaking it down into simple compounds 

such as gaseous carbon monoxide and hydrogen as well as an inert solid called slag [22]. Plasma 

gasification processes waste through the use of plasma torches, an example of Westinghouse Plasma 

Corporation’s (WPC) torch is shown below in Figure 02. A plasma torch applies a high voltage to a 

working gas, which heats it to temperatures up to 6000C. The temperature of the plasma torch is 

dependent on the voltage applied, and it can be adjusted to accommodate feedstocks with varying 

energy contents [25]. An important difference between PG and incineration is that PG involves only 

partial oxidation, while incineration involves more complete oxidation through combustion. Limiting the 

reaction to partial oxidation combined with high temperatures prevents the formation of many tars, as 

well as dioxins and furans which are extremely hazardous to human health even in small amounts [16].  
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Figure 02 

                        

Figure 01 shows a cutaway diagram of a Westinghouse Plasma Corporation plasma jet. The heated gases exit the torch on the 

right side of the diagram and enter the gasification chamber where the gas is allowed to interact with the wastes to produce 

syngas and other products [22]. 

The plasma gasifier is made up of a closed chamber with up to six plasma jets arranged to heat 

the feedstock [22]. While many configurations exist, this paper will focus on the gasifier designed by 

Alter NRG because it has been applied multiple times worldwide and has been proven as effective. A 

visualization of their design is shown in Figure 03. In this design the feedstock is added to the gasifier 

from above, where it works its way downward towards the plasma jets as the material underneath it is 

gasified. The syngas rises above the ungasified feedstock to be collected at the top of the gasifier where 

it can be collected for further processing or use. 

 

 

 

 

 

Figure 03 
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Figure 03 shows Alter NRG’s plasma gasifier design using six Westinghouse Plasma Corporation plasma jets. Waste is added 

through the central feed port and the resulting syngas is collected at the top of the gasifier. Plasma torches are arranged in a 

circular pattern to distribute the heat energy evenly. Plasma torch electrodes must be replaced periodically as their electrodes 

oxidize. This design allows the gasifier to continue operation even if one or two of the plasma jets have been removed for 

servicing [24]. 

Organic compounds made up of carbon in combination with hydrogen, oxygen, and/or nitrogen 

are gasified and broken into simple components by the high heat of a plasma torch and collected at the 

top of the gasifier as syngas [22]. This raw syngas is made up of mostly carbon monoxide and hydrogen, 

but to obtain a higher value product the low heating value (LHV) of the gas must be increased, usually by 

encouraging H₂ formation. This can be done through the water-gas shift reaction, in which steam is 

pumped into the gasifier where Reaction 1 takes place. The resulting syngas is made up of primarily 

carbon dioxide and hydrogen gas [25]. This refined syngas has a heating value modestly lower than 

natural gas, but can be used as an input in a wide variety of industrial applications. 

Reaction 1 CO + H₂O = CO₂ + H₂ 

When using heterogeneous feedstocks such as the municipal solid waste (MSW), the inorganic 

compounds are not easily broken down and melt into a mixture which is drained from the bottom of the 

gasifier, this mixture is called slag. The slag locks in heavy metals and other harmful compounds in an 
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inert solid [25]. Once cooled the slag can be used to make bricks and other building materials or used as 

an aggregate for cement production. Unlike Air Pollution Control Residues (APCR’s) the slag resists 

leaching of heavy metals and other contaminants. This makes it a suitable construction material to use 

in urban areas where contact with both water and humans is frequent [22]. This use allows slag to 

displace other materials that would otherwise have to be collected and shipped to construction sites, 

instead reusing material already claimed by civilization.  

When applied to plastic waste, PG produces syngas with a higher hydrogen content than syngas 

produced with a MSW feedstock. Syngas produced from a plastic feedstock is composed of 62% H₂, 34% 

CO, with the remaining 4% trace gases composed of CO₂ and CH₄ [15]. Alternatively syngas produced 

with a feedstock of MSW is composed of 41% CO, 34% H₂, 14% CO₂, 6% H₂O, and 4% CH₄ with some 

trace hydrochloric acid and hydrogen sulfide (<.2% each) [22]. Hydrogen gas has a very high LHV of 120 

MJ/kg, so syngas with more hydrogen as a percentage will have a higher LHV. Additionally the presence 

of water vapor in a fuel will lower its’ LHV.  As a result, syngas produced from MSW would be expected 

to have significantly lower energy content than syngas produced with waste plastics, as well as 

containing more contaminants. This makes syngas produced with waste plastics objectively higher in 

quality.  

High-quality syngas has several potential applications in different sectors. It can be used as a 

feedstock to synthesize liquid fuels using the Fischer-Tropsh process, burned to produce electricity, or 

potentially further processed to isolate H₂ for use in chemical manufacturing or as a transportation fuel. 

Because syngas has so many uses in different industries, it should be able to maintain a relatively stable 

value through fluctuations in the price of its substitutes.  

Research Questions:  
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1) Can PG technology complement conventional recycling methods to increase the efficiency of resource 

allocation and reduce the volume of plastic landfilled? 

2) Could an estimation of profitability PG facility running on plastic waste in California be created? 

Methods: 

To predict the viability of PG technologies for use in energy recovery from waste plastics, this 

paper will include an economic analysis of a hypothetical 300 tons/day PG plant using a waste plastic 

feedstock, located on the west coast in California. This location was chosen for three main reasons, its 

high population density ensures a steady supply of waste plastic, favorable attitudes towards 

environmental regulation provide potential for subsidies and tax incentives, proximity to China gives 

access to materials rejected by new Chinese standards, and hydrogen vehicles could potentially provide 

demand for high-value hydrogen fuel created with syngas. In addition to the economic analysis of the 

plant, a cash flow analysis will be included to determine payback period, net present value, and return 

on investment.  

The economic analysis will be a modification of the analysis completed by Caroline Ducharme in 

2010, where the feedstock for the PG plant is mixed/waste plastic instead of MSW [6]. Ducharme’s 

analysis includes information about capital, operation, and labor costs for a PG plant I was unable to find 

elsewhere. Therefore this information has been included in the analysis, adjusted to compensate for a 

smaller facility due to a limited plastic feedstock. Before this information was used, it was adjusted for 

inflation estimated to be ~16% between 2010 to 2018 [Bureau of Labor]. Plant costs are and broken 

down into capital costs, labor costs, maintenance costs. Plant income is primarily through the sale of 

electricity to the grid, but income from the sale of purified and compressed hydrogen is also listed in 

parenthesis. This will not be used in the final economic analysis due to additional equipment and 

personnel needs, but will still be listed because its high value may justify the increased capital and 
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maintenance costs. Sales of recovered metal and slag are assumed to be negligible. Because the plastic 

feedstock is almost entirely made of organic material, effectively all of the material will be gasified 

rather than vitrified. 

Economic Analysis: 

The economics of a new technology plays an important role in determining whether it is 

ultimately adopted or left behind. Barring the introduction of government policies subsidizing the 

technology or mandating its use, if the technology cannot make money it is unlikely to be adopted over 

more profitable alternatives. As stated above, this analysis borrows heavily from Caroline Ducharme’s 

2010 analysis [6].  

Expenses: Ducharme’s study it was assumed the plant would operate 330 days per year, leaving 35 days 

for shutdowns and maintenance/repairs. In 2016, the California Department of Resources Recycling and 

Recovery estimated 500,000 tons of low grade plastic were exported from California. It is unreasonable 

to assume a single facility would be responsible for the entire state’s plastic waste, therefore 300 

tons/day is the chosen capacity and gives an annual capacity for a 300 ton/day plant of 330 days/year * 

300 tons/day = 99,000 tons/year. This corresponds to just under 20% of California’s annual exports of 

low-grade material, which seems like an attainable goal to prove the viability of the technology. 

Assuming $650/annual ton of capacity [6], capital costs can calculated as $650/annual ton * 99,000 

tons/year = $64,350,000. However this does not include the cost of the plasma arc estimated to be 

$27,400,000 [5], bringing the capital costs to $91,750,000. Using an inflation rate of 16% from 2010 to 

2018 [Bureau of Labor Statistics, consumer price index], this gives us total capital costs of $106,430,000. 

Assuming capital costs need to be paid back at 10% per year, this gives us an annual cost of $10,643,000 

to be split over 99,000 tons/year. This gives capital costs of $108/ton. 
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Ducharme’s study says 50 people can handle a 750 ton/day facility with labor costs of 

$2,500,000/year. Therefore it is assumed roughly 25 people should be able to handle a 300 ton/day 

facility with about $1,250,000 in labor costs per year. Using the same inflation rate as above, this gives 

annual labor costs of $1,450,000. Labor costs per ton of feedstock can be calculated by $1,450,000 / 

99,000 tons/year = $15/ton. This assumption is probably an overestimation of the labor needs of the 

smaller plant, so actual costs in practice may be marginally lower.  

Maintenance costs for a PG facility will be difficult to estimate because companies developing 

the technology are hesitant to release information. This is likely because the maintenance costs are 

heavily dependent on the lifetime of the plasma electrode. For a 750 ton/day plant Ducharme estimated 

$10,669,000 in annual maintenance costs. For a plant less than half that size, the maintenance costs will 

likely still be around half of the larger plant. The assumed cost for this smaller plant will be 

$5,500,000/year. Using the above inflation rate of 16% over eight years, the operating costs should be 

about $6,380,000. The cost per ton is calculated as $6,380,000/year / 99,000 tons/year = $64/ton. 

For this economic analysis, the plant will pay market value for mixed plastics #3-7 at $20/ton. In 

practice this number will almost certainly be less than this. Since the technology can also be applied to 

contaminated plastics rejected by recyclers, this material can likely be obtained for a much lower cost. 

Recyclers may be willing to pay for to send material to a PG facility if the alternative is paying high 

landfill fees for disposal. 

Income: The plant’s main source of income will be through the sale of electricity to the grid. Punochar 

calculates 1 kg of plastic contains about 43.5 MJ of energy, of which 13.05 MJ is recoverable as electrical 

energy [18]. Converting to kWh/kg and subtracting the energy required for the plasma arc leaves 2.4 

kWh/kg of plastic. 2.4 kWh/kg * 1000 kg/tonne / 1.1 tons/tonne = 2200 kWh/ton. In southern California, 

wholesale electricity costs range from $0.37/kWh to $0.02/kWh depending on the source and time of 
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year. For this study a conservative price of $0.13/kWh is assumed: 2200 kWh/ton * $0.13/kWh = 

$286/ton.  

Instead of burning syngas to produce electricity, the hydrogen can be isolated, purified, and 

compressed to be sold on the market. With retail prices for hydrogen of almost $14/kg, this could be a 

lucrative product especially if the world begins to transition toward a hydrogen economy. Annual 

hydrogen production can be calculated through syngas yields, hydrogen content, and some of the 

physical properties of hydrogen. 99,000 tons/year * 907 kg/ton = 89,793,000 kg/year. According to a 

2013 paper by Lopez et al. plasma gasification of a waste plastic feedstock produced 3.5 m3 of syngas 

for every kg of feedstock, with 62% of the gas being hydrogen. 89,793,000 kg/year * 3.5 m3 syngas/ kg 

@1200C * .62 m3 H2/m3 syngas = 194,850,810 m3 H2/year @1200C. At 1200C, 1m3 of H2 contains 8.27 

moles of H2. After cooling, one mole of H2 gas contains .00202 kg of H2. 194,850,810 m3 H2 @1200C * 

8.27 moles H2/m3 H2 * .00202 kg H2/mole H2 = 3,255,060 kg H2. While retail price of H2 is nearly $14/kg, 

it must be compressed and transported before it can be sold. Including compression and transportation, 

$6/kg represents a realistic net income from the sale of hydrogen. 3,255,000 kg H2 * $6/kg H2 = 

$19,530,360/year. $19,530,360/year / 99,000 tons/year = $197/ton 

With a waste plastic feedstock for the plant, the sale of metals and slag will be negligible $0/ton.  

 

 

 

Table 01 

PG expenses  $US/to
n 

PG revenues 
(Electricity) 

$US/to
n 

PG revenues 
(Hydrogen) 

$US/to
n 

Capital charges 
[6] 

108 Electricity to 
grid [18] 

286 Hydrogen 
Production 
[15] 

197 
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Labor costs [6] 15 Metal and 
slag 

0 Metal and 
slag 

0 

Operation and 
maintenance 
[6] 

64     

Feedstock 
price [a] 

20     

Total Expenses 207 Total 
Revenues 
(Electricity) 

286 Total 
Revenues 
(Hydrogen) 

197 

Table 01 shows estimated expenses and income for a 300 tpd PG plant shown in $US/ton of feedstock. Hydrogen  

and electricity production are shown separately because syngas is consumed to make each. Hydrogen ends up  

being the less valuable product, and may also include higher costs to produce it. [a] – Secondary Materials Pricing 

Based off these numbers, the plant appears to be economically viable. Even assuming the plant 

must pay $20/ton for the waste plastic feedstock, the plant produces a profit of over $100/ton of 

feedstock processed. In practice, the plant would likely be able to obtain contaminated feedstock not 

suitable for recycling at a lower price. Theoretically the plant could process any material rejected by the 

recycling facility, which the recycler may actually be willing to pay some amount for disposal. 

Cash Flow Analysis: 

The cash flow analysis assumes an inflation rate of 2.5% per year. This rate is applied to both the 

price for electricity and operating costs. The payback period of this plant was calculated to be between 

eleven and twelve years, and at 15 years the Net Present Value (NPV) was -$9,159,467.73 and a return 

rate of 3.8%. The full analysis with annual income and expense estimations is included in the appendix.  

 

 

Discussion: 

Plasma gasification has the potential to increase the efficiency of our recycling systems. It can do 

this by supplementing existing recycling, allowing resources currently not recyclable using conventional 

methods to be utilized again in the economy. One of the biggest advantages to this technology is these 
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improvements can be made without changing the behavior of consumers on an individual level. While 

the optimal solution would be to reduce use of conventionally non-recyclable plastics and decrease 

contamination, these seem unlikely to work especially in communities where recycling is not mandated. 

If recycling seems too complicated or inconvenient to consumers, some will elect to not participate. 

Plasma gasification allows recyclers to mitigate some of the downsides brought on by single-stream 

recycling while still taking advantage of increased participation encouraged from consumers.  

The discovery of the Great Pacific Garbage Patch in 1997 brought plastic buildup in the oceans 

into focus for the world [19]. 21 years later, there are a few groups working on cleaning plastic out of 

the water but not as many working on what to do with plastic after it has been recovered. Much of the 

waste has spent years if not decades in the ocean, where UV rays from the sun and saltwater can cause 

the plastic to break into microscopic bits. This makes the plastic both harder to filter from seawater, and 

harder to recycle after recovery. This source of waste plastic may be best processed through PG due to 

the increased difficulty of sorting very small bits of plastic for traditional recycling.  

Plasma gasification may prove to be a valuable technology because it produces energy and 

materials out of a low value input. With recyclers struggling to get rid of both mixed and contaminated 

plastics and usage trending higher than ever, there should be no shortage in supply of waste plastics in 

the coming years. In addition to being used on plastics, PG is also a suitable method to destroy 

biomedical waste [3]. Currently this waste is incinerated to destroy any pathogenic or otherwise harmful 

components in the waste, but PG can also do this effectively. This could provide another source of 

income for a PG plant, as hospitals currently pay as much as $400-1000/ton to dispose of such waste 

[Sharps Compliance, Inc.]. 

In early November 2018, Bloomberg News reported on a plastic-to-fuel plant coming to Indiana. 

The company organizing the project RES Polyflow plans to begin construction early in 2019 on a plant 
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processing 100,000 tons/year of plastic feedstock to produce diesel and other fuels. So far the project 

has secured $10 million in funding from Brightmark, with another $37 million being requested from the 

same group. RES Polyflow is hoping to finance the rest of their costs through public bonds [1], although 

the amount of public funds was not reported. This plant is similar in size to the one in the economic 

analysis above (100k tons/year vs 99k tons/year), so the project is still likely in need of tens of millions in 

additional funding to near the $92 million in overall costs estimated for my slightly smaller plant. 

To encourage the construction of a plant using PG technology for chemical recycling, policy 

changes mandating recycling of all plastics may be needed. Without such a policy the capital investment 

required to build such a plant might prove too risky for many investors. However with a policy banning 

plastic from landfills in place, recyclers would be forced to send materials not conventionally recycled to 

alternative recycling facilities such as PG plants. This can allow recyclers more flexibility to send 

materials to PG when the market for recycled materials is poor or when the material is too 

contaminated to be recycled effectively. Alternatively policies can be put in place to reward bond money 

to advanced waste management practices. This might make the high construction costs easier to 

swallow for prospective investors.  

Plasma gasification could potentially decrease the price consumers must pay to recycle. 

Currently recyclers are forced to spend money to separate low-value plastics from #1 and #2 plastics 

before they can be sold. But these plastics aren’t worth very much on the market, so recyclers get most 

of their profit off selling high-value plastics. Since China stopped accepting most low-grade plastic for 

recycling, the market for it has declined sharply [21]. This results in recyclers being forced to sell for less 

than the cost of separating the plastic, or opting to landfill or incinerate it [9]. This cost for recyclers 

ends up being passed on to the consumer in the form of higher recycling fees [12]. Plasma gasification 

can help alleviate this problem by supporting a market for low-grade and contaminated plastic.  



16 
 

Syngas has several applications and can be used to do more than just generate electricity. A 

potential use for syngas in the coming years is as a feedstock for H2 production for use in transportation. 

After the water-gas shift reaction, the syngas is made up of mostly H2 and CO2. From here the syngas can 

be pumped through a CaO filter, which captures CO2 through Reaction 02 [14]. The resulting gas is 

nearly pure H2, which would then be cooled and compressed before being shipped to hydrogen refueling 

stations for use in hydrogen fuel cells. Hydrogen fuel cell vehicles combine many of the convenient 

features of gas engines such as fast refueling and high fuel energy density with the environmental 

advantages of zero-tailpipe-emissions [17], and may be the key to replacing fossil fuel transportation in 

time to avoid catastrophic climate change. The filters are replaced, and can be heated in another 

location to release their stored CO2 for use in greenhouses, industrial manufacturing, or sequestration. 

After CO2 is removed from the filters, they can be reinstalled at the PG plant to capture CO2 again. The 

increased global attention to climate change means avoiding the release of greenhouse gases will be a 

crucial to the implementation of this technology.  

Reaction 02                 CaO + CO2 <--> CaCO3 

 

Plasma gasification is an incredibly versatile technology which can be applied to much more 

than just plastic waste. Although plastic makes a great feedstock due to the high-quality syngas it 

produces when gasified, PG can also be applied to general MSW. In areas where landfill costs are high, 

PG of MSW may be a more economical option than the status quo. Because of the compact nature of 

the gasifiers, the plant could be expanded to handle MSW for energy recovery and materials production.  

Conclusion: 

A PG facility running on waste plastic produces syngas with superior energy content and tar 

content when compared to other potential feedstocks. When applied to mixed or contaminated plastics 

the technology is able to create valuable products out of a low-value input. Reduced sorting 
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requirements and higher contamination tolerance may prove an important solution to problems created 

by the single-stream collection methods common in the United States presently. Consumers will not 

have to change their recycling habits, but recyclers may see significant reductions in cost and/or 

increased income from sale of mixed plastics. The energy content in syngas created through PG of 

plastics is favorable for electricity production and allows the syngas to be utilized without the logistics of 

moving it off-site for use. However there is potential to use the high-quality syngas for to crease other 

products such as synthetic fuels While a PG plant running on a waste plastic feedstock is economically 

viable, some policy changes would likely be needed before a facility is built and operating. A 3.8% return 

rate is simply too low to excite private investors, although there may be some room for public entities 

such as cities to share some of the costs. Without mandates banning plastic from landfills or subsidies to 

offset costs, PG will likely be seen as too risky to justify the large investment of capital needed to 

construct and operate the plant.   
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