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Abstract

This report analyzes and evaluates one approach to utilizing local
planning analyses of public renewable resource management agen-
cies as an input in developing large-scale (national) resource manage-
ment plans. A type of multilevel approach (referred to as the
Bartlett-Wong approach) is discussed and is evaluated in a test case.
This prototype performed well at the highest level of analysis but was
less reliable in terms of its implications for the lower level planning
units.

1Headquarters is in Fort Collins, in cooperation with Colorado State University. James
Pickens is now Assistant Professor, School of Forestry and Wood Products, Michigan
Technological University, Houghton.



A Multilevel Optimization System for
Large-Scale Renewable Resource Planning

John G. Hof and James B. Pickens

Introduction

Historically, national resource optimization analyses
have dealt with very highly aggregated variables and
with an extremely low level of resolution. As a result,
such analyses could not be validated or monitored.
Attempts to disaggregate national planning (optimiza-
tion) results to local levels also have been generally
unsuccessful.

One extreme alternative is to base national planning
on simple aggregations of local level optima.? However,
this alternative is in conflict with the reasons for national
planning in the first place: input and/or output con-
straints (including objectives, etc.) that apply across local
planning unit boundaries.

Instead a second alternative—a multilevel approach—is
examined here. It utilizes local analyses to generate in-
formation for a national analysis that, in turn, can accom-
modate national concerns and constraints. An example
of a use for such an approach is in the development of
the USDA Forest Service National (RPA) Assessment and
Program.

This report is based on the assumption that the prin-
cipal purpose of national planning in renewable resource
agencies is to select the output mix to be produced and
the means of producing it. Although there are many in-
formational outputs of national planning analysis (e.g.,
price projections, consumption and production projec-
tions, resource inventories, and distributional effects on
income and employment), this report is limited to
efficiency-oriented analysis. It would be impossible to
evaluate in one publication all of the different analytical
approaches that can be included in national renewable
resource planning efforts.

The Problem

For this discussion, define the following variables:

= budgetary input (cost, ignoring land input)

= land input

= timber output

= forage output

= an implicit production function

= production factors purchased with budget (X))
= factor prices of the Z,

= price of timber

= price of forage.
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2This means a single aggregation, adding up all of the “pre-
ferred” or “final” plans from the local levels. This should be
distinguished from an approach where national planning considers
a variety of aggregations of different lower level alternatives. Many
of the latter sort of aggregations might be possible. For example,
if there were 10 different alternative &Ians for each of 100 local plan-
ning units, then there would be 10" ditferent alternative national
aggregations.

The “0” superscript is used to indicate a fixed level
of the given variable. For this discussion, only two out-
puts (timber and forage) are considered. It is assumed
primary objective of a planning optimization analysis is
to locate efficient points—points that are on a produc-
tion frontier. The optimization problem relevant to
public renewable resource planning is somewhat dif-
ferent than the classic economic analysis of production
(Silberberg 1978), because one input, land (X3), is not
priced and is fixed. The problem is to purchase other
inputs (Z) with the budget (X,) so as to produce outputs
(Y) efflclently Assuming that there are only two Z’s,
one way to formulate this problem is

Minimize: X, = r,Z, + r,Z, [1]
Subject to: Y,> Y7
Y2 Y

X<X
f(Z, Z,, X, Y, Y) = 0

Solving this problem is essentially attempting to locate
an efficient point on a particular production frontier
(product transformation curve).

Another way to accomplish basically the same thing
is to solve the following problem.

Maximize: PY, + P,Y, (2]

Subject to: r,Z, + rZZSX‘l’
X <X
f(Z., Z,, X,, Y., Y,) =0.

The P, and P, simply provide for a given weighted
summatlon of the outputs. Solving this second (revenue
maximizing) formulation also amounts to locating points
ona production frontier (product transformation curve).
If the Y and Y; in formulation [1] were set at the solu-
tion levels for Y, and Y, in formulation [2], the
minimum cost (budget) in formulation [1] would be equal
to X in formulation [2], and the Z, and Z, in each solu-
tion would be the same.

Similarly, a set of cost-efficient alternatives could be
generated with formulation [1] by repeated solution with
parametric variation in Y] and Y. Essentially the same
thing could be accomphshed with formulation [2] by
parametrically varying X:, P}, and P;. The two ap-
proaches are fundamentaﬂy equlvalent

Throughout this report, formulation [2] is generally
used for two reasons. First, formulation [1] does not lend
itself directly to the traditional formulation of a cost
minimization problem, because one input (land) is not
costed and is held fixed, which is rather unconventional.
Formulation [2], in contrast, holds all inputs fixed, and
maximizes some summation of outputs. A solution to for-
mulation [2], therefore, can be interpreted as a point on
a production frontier.



Second, formulation [2] allows prespecification of the
budget level for the production frontier being analyzed.
As will be shown, this is a desirable characteristic for
the analysis to follow. Literally, the P, and P, will be
varied to “sample” different points on a given produc-
tion frontier.

This approach [2] also implicitly maximizes net
revenues, because, with a fixed budget, deducting costs
from revenues in the objective function is redundant.
The scarcity of the inputs is accounted for by the
(presumably binding) constraint. For example, to max-
imize net revenues (or profit)

Maximize: P,Y, + P,Y, - (r,Z, + 1,Z)
Subject to: f(Y,, Y,, Z, Z,, X,) = 0

and, subject to a binding budget and a binding land
constraint,

1,Z, + 1,2, = X}
X, = X;.

This problem can then be rewritten as

Maximize: PY, + P,Y, - X]
Subject to: £(Y,, Y,, X}, X}) = 0.

Because X' is a constant (r,Z, + r,Z, = X}), its presence
in the objective function does not influence the solution
(assuming second order conditions are met) but does in-
fluence the shadow prices (on X{ and Xj). Thus, with a
fixed budget, the only motivation for choosing this for-
mulation rather than [2] is whether shadow prices are
desired in terms of net revenues or gross revenues. It
will be useful here to use formulation [2] so that the
budget is fully utilized, even if it implies a solution with
less than maximum net revenues. That is, with formula-
tion [2], only the relative magnitude of the output prices
to themselves is important; the scale of output prices
relative to cost levels is irrelevant. Hereafter, the Z’s will
be suppressed, and X, will be used for simplicity. Note,
however, that determination of the vector of inputs (Z,)
purchased with the budget (X,) is an important part of
solving formulation [2]. In the linear programming for-
mulations discussed later, it is principally by varying
land allocation and by varying this Z vector that different
output vectors are generated. In these linear programs,
there are rows to represent budgetary inputs (X)) and
land inputs (X,), and the Z vector varies across columns
that are “management prescriptions” applied to the land.

In national renewable resource planning, an additional
problem arises. Whereas the total amount of the land in-
puts as well as its allocation across local planning units
is fixed (by geographic boundaries), even if the total
budget input is fixed, the allocation of budget across local
planning units is not fixed. And, the allocation of total
outputs to local planning units also must be determined
(along with total output levels in the first place). Thus,
the national problem can be formulated as

Maximize: P,Y, + P,Y,

Subject to: f (X, , X, , Y, , Y, J =0 i=1n

E Xl ISX:

i=1 '

X,, =X;,;5i=1n
E Yl,i - Y1

i=1

) Yz,i =Y,

i=1

or, more simply
Maximize: P, (£Y, ) + P, (FY, )

Subject to: f(X, , X; , Y, , Y, ) =0;i=1n

1,i’

L X, <X} [3]
i=1
where the i subscript indicates the i local planning
unit’s “share” of the given variable, and n indicates the
number of local planning units.

If it were not for constraint [3], that is, if the alloca-
tion of budget to local units was predetermined, or if
there was no global budget constraint (only local ones),
then the global solution would simply be the collection

of local solutions. That is, collect, for all i=1,n

Maximize: PY, ; + PY, ,

Subject to: f, (X] , X5, Y, , Y, ) =0.

To use constraint [3] as the only reason for national
planning is to take a very limited view of the reasons for
national planning. However, it provides a workable for-
mulation for testing multilevel optimization.

Linear Programming Analysis
of Managed Forest Ecosystems

Renewable resource management and planning prob-
lems often have been analyzed using mathematical pro-
gramming techniques such as linear programming
(D’Aquino 1974, Ashton et al. 1980). The basic structure
of the linear programs commonly used to analyze man-
aged renewable resource ecosystems is depicted in table
1. The simplistic example in table 1 ignores time dimen-
sions and constraints such as budget limitations, even
flow restrictions, and minimum output levels. These
complexities do not pose analytical problems, but do
make the models quite large in some cases. Also, for
simplicity, table 1 only includes two outputs: timber and
forage.

In table 1, the major column headings are types of land
and/or resources. The C, through C; columns are the
number of acres allocated to alternative management
prescriptions which could be applied in TYPE 1 (C
and C,) and TYPE II (C,, C,, C;) land. The Timber an
Forage rows in the A matrix represent the resource flows
per acre that result from implementation of the manage-
ment prescriptions. For example, A, , is the output of



Table 1.—A simple depiction of typical linear programs used in renewable resource manage-
ment and planning.

Type | Type Il Outputs Type Right-hand

C, c, G, c, C;  Timber Forage side

Timber A A, A A -1 = K, =0
: 2 M : :
Forage Ayl Ava Ay A A 4 = Ky=0
TYPE | 17 175" ’ = K
TYPE Il 1 1 1 = K,
Objective
function -A, A, -Ass -Ag 4 Ass  Asg Asz

timber for each acre on which management prescription
C, is implemented. The TYPE I and TYPE II rows are
the land inputs to this production system. K, acres of
Type I land are available, and K, acres of Type II land
are available.

The Outputs (Timber and Forage) are accounting col-
umns that collect the outputs described in the first two
rows into aggregate outputs for the area being analyzed.
K, and K, are set at zero to force all product output
levels into these columns. The coefficients in row 5, the
Objective Function row, describe the change in net
revenues if one unit of C, occurs. Thus, A, , is the cost
of prescription C, on one acre, and A, , is the revenue
derived from one unit of timber output. This row is often
the objective function to be maximized. As discussed
previously, cost (budget) might also be constrained and
revenue might be maximized, or outputs might be con-
strained and cost might be minimized.

Problems in Applying Linear Programming
at the National Level

Planning for optimum management of national
renewable resources is a staggering problem because of
conflicting needs for detail and scope. Analyzing
relatively small areas of land (such as a National Forest)
is appealing because of the relative detail, resolution, and
accuracy that can be achieved in a model such as that
depicted in table 1. However, common inputs or outputs
may enter the problem across local boundaries, increas-
ing the desirability of a larger scale analysis that can cap-
ture absolute and comparative advantages between local
land units. Thus, local level optima cannot simply be
added up to yield an optimal national plan. The ideal
solution would be the use of a single national analysis
that is capable of achieving high levels of resolution and
detail. Unfortunately, such a model would be huge and
unworkable. For example, typical FORPLAN (Johnson
et al. 1980)* models used at the national forest level in
USDA Forest Service land management planning are
large enough to stress the capabilities of modern com-
puter systems. Attempting to agglomerate the FORPLAN
models from the 120 forest planning units into one na-
tional model would not be possible.

3Johnson, K. N., D. B. Jones, and B. M. Kent. 1980. Forest plan-

ning model (FORPLAN) user's guide and operations manual.

Available from Systems Application Unit, Land Management Plan-

ning, USDA Forest Service, Fort Collins, Colo.

Decomposition Models

One approach to solving certain very large optimiza-
tion problems is ’decomposition” of the problem. As
Dantzig and Wolfe (1961) state:

Many linear programming problems of practical
interest have the property that they may be
described, in part, as composed of separate
linear programming problems tied together by
a number of constraints considerably smaller
than the total number imposed on the problem....
It would seem that each of the n sets of con-
straints ... constitutes a “subproblem” of second-
ary importance to the whole program, and that
they should be studied mainly through the
restrictions they impose on the activities of the
”joint” constraints...

Dantzig (1963) noted that,

The price paid for this decomposition is that the
master program and the subprogram may have
to be solved several times. First the master pro-
gram is solved, and from its solution, objective
functions are generated for each of the subpro-
grams. Then these are solved, and from their
solution new columns are generated to be added
to the master program. The process is then
repeated until, after a finite number of cycles,
an optimality test is passed.

Kornai and Liptak (1965) emphasized the interpreta-
tion of decomposition as a multilevel optimization prob-
lem. Kornai (1975) later clarified that the real distinction
between Dantzig and Wolfe’s approach and theirs was
that theirs was a “direct” procedure that did not go
through the so-called “‘extremal problem.” Kornai (1975)
also clarified that both approaches (and a number of
other ones) can be considered to be members of the
“family of decomposition procedures.”

The Kornai and Liptak (1965) approach (for a two-level
problem) involves a "’game-theoretical model” between
a higher level planning authority (the "center”’) and a set
of sectoral planning units. The center makes an initial,
provisional distribution of the “available resources,
material, manpower, etc. among the sectors, and at the
same time also indicates their output targets.” The sec-
tors then rigorously analyze this set of “quotas” and



report back “one type of economic efficiency index—
the shadow prices derived from programming.” The
center then modifies the resource and output “‘quotas”
based on this information. By iterating back and forth,
a sectoral allocation is arrived at that, within a given
tolerance level, equates the shadow prices across sectors,
and thereby reaches a global optimum.

Both the Dantzig-Wolfe (DW) approach and the Kornai-
Liptak fictitious play (FP) approach are shown to con-
verge to a solution with continued iterations between
sectors and the center. In further comparing the two
basic approaches, Kornai (1975) stated:

...two main classes may be distinguished. In one
of these shadow prices are sent down from above
and indicators of the volume type are sent up-
wards from below. The “ancestor” of this class
is the DW algorithm. In the other class, volume
type indices are sent down from above and
shadow prices are sent upwards from below. The
pioneer of this second class was the FP
algorithm.

Problems in Applying a Decomposition Model
at the National Level

There are two principal problems in applying a DW
or FP model to a national renewable resource planning
problem. First, it would be quite rare for all of the local
planning units (such as national forests) to complete their
planning efforts simultaneously. Second, the communi-
cations network and coordinating authority to imple-
ment the repeated iterations necessary in a DW or FP
model generally are not present. An alternative is needed
that allows the local planning units to operate more in-
dependently and still allows an integration of these ef-
forts without serious suboptimization (in the global
sense).

The Bartlett-Wong Approach

Work by a number of researchers, most notably Bartlett
(1974) and Wong (1980), suggests that national level
analyses could focus on control by the selection of
discrete management alternatives provided (perhaps
over a period of years) by the lower levels of the organiza-
tion. This approach has not been developed or tested.
This report develops the details of this approach and tests
it in a case example.

. Figure 1 depicts the basic structure of this analytical
approach. The local level linear programs are used to
construct discrete management alternatives for consid-
eration at the national level. The national level model
would also most logically be a mathematical program.
Table 2 depicts the programming matrix of a very sim-
ple linear programming version of a national model. In
this example, only two local planning units, two alter-
natives, and two products are included. Also, only one
time period is included. Expansion beyond the dimen-
sions of this simple example is relatively straightforward.

NATIONAL
{(Upper level)
MODEL

ALTERNATIVES ALTERNATIVES

Local Planning Model 1 Local Planning Model n

Different management
prescriptions considered
for existing land types

Different management
prescriptions considered
for existing land types

Figure 1.—Multileve! modeling structure for national level planning
analysis.

In table 2, X] through X; are 0-1 variables represent-
ing selection or rejection of an alternative output vector
with associated joint cost (A, i i=1,4), for a given local
planning unit. For example, X represents selection (1)
or rejection (0) of the output vector A, ,and A, | in
Local Planning Unit 1. The first two rows collect the out-
puts from selected alternatives, and the fifth row is the
ob)ectlve function to be maximized. In this case, (global\
budget is constrained (fourth row) and revenue is max-
imized. All of the matrlx below the objective function
row constrains the X} through X’ so that each of them
is between 0 and 1, and so that a “fotal” of only one alter-
native can be selected for each local planning unit.
Because this is a llnear programmmg model with con-
tinuous variables, X; through X may actually take on
solution values between 0 and 1 but not equal to either.
For example, X and X in table 2 mlght solve with
values of 0.6 and O. 4, respectlvely This is interpreted
as a partial selection of each alternative, the combina-
tion of which satisfies the “0-1 model constraints.” This
can be avoided if the national model is solved with an
integer program. This option is discussed later.

The principal advantage of this multilevel optimiza-
tion is that the detail and high resolution of local level
analyses are preserved, but national optimization with
a global budget constraint is still allowed—the national
optimum will not simply be a summation of local optima.
The implied national model reflects much detailed pro-
duction analysis, but is itself of very workable size and
complexity. And, any national model solution can auto-
matically be disaggregated to a set of local management



Table 2.—A simple upper level model structure.

Local Local
planning planning
unit 1 unit 2 Outputs Cost Type Right-hand
X! X; X X; Timber  Forage side
Timber A, A, A, A, -1 = 0
Forage A2:1 A2:2 Ay, A2: 4 -1 = 0
Cost A, Aa,z As,3 Aa, 4 -1 = 0
Global budget '
constraint 1 = K
Objective
function B; B MAX
0-1 1 1 = 1
Model
constraints 1 1 = 1

plans. The main shortcoming of this multilevel optimi-
zation approach is that limiting the national analysis to
a finite, in fact relatively small, number of discrete
choices may overlook desirable options and lead to
suboptimization.

The Bartlett-Wong approach might be contrasted with
the DW and FP approaches as follows. In the DW and
FP approaches, the center (national planners) and the
sectors (local planning units) iterate back and forth to
converge on a solution that is known to be optimal within
some prespecified level of tolerance. In the process of
this iteration, the sectors must run their local models
several (perhaps many) times, and each run is directed
by the center based on the information gained from the
previous iteration(s). In the Bartlett-Wong model,
however, the center must direct the sectors to perform
a full set of runs based only on whatever information is
available. These local runs may be performed at different
times, as the models are available. The center must try
to anticipate a set of sectoral runs that will be needed
in searching for a global optimum (or an approximation
thereof). The DW and FP approaches were shown (Dant-
zig and Wolfe 1961, Kornai and Liptak 1965) to always
converge to approximate optimal global solutions.
Because such a proof is not possible for the Bartlett-
Wong approach, a test case is presented here to evaluate
its tendency to suboptimize. The Bartlett-Wong approach
is considered as a possibility because it currently seems
pragmatically more useful than the DW and FP ap-
proaches for national renewable resource agencies. In
any situation where the more elegant DW or FP type of
approach is pragmatically feasible, its use probably
would be preferable, because each has been shown to
always converge to a given approximation of optimal-
ity. The test case evaluation of the Bartlett-Wong model
cannot be used to generalize, and should be interpreted
accordingly. All inferences and conclusions drawn are
based solely on this single experiment.

Alternative Forms of the Bartlett-Wong Approach

Different Ways to Derive Lower Level Alternatives

Figure 2 is a simple production possibilities curve for
a given lower level planning unit, one time period, and

two outputs. Timber and forage are competitive outputs
with one product transformation relationship, described
by arc AB. This particular product transformation curve
corresponds to an implicit budget level b,. Larger
budgetary expenditures, such as b,, would shift the
transformation curve to the right, as in arc CD. An alter-
native describes some mix of timber and forage outputs,
and is depicted by a point, such as P,, on one of the
tranformation curves. The set of alternatives used to
describe this simple production unit’s capabilities should
approximate the product transformation relationships at
various budget levels. For example, alternatives P,, P,,
and P, might approximate these relationships for
budget b,, while P,, P,, and P, correspond to budget b,,
and so forth.

Given such a production unit, systematic development
of alternatives could proceed from at least three different
approaches:*

1. Set the budget at a particular level, for example b,,
and obtain alternatives (e.g., P,, P,, and P,) by vary-
ing the relative output prices (i.e., the objective func-
tion arguments) and maximizing revenue. This could
be done for several budget levels. This would result
in a group of alternatives depicted by the P’s in Figure
2.

2. Set the output mix (e.g., at A)) and minimize costs
to determine the required budget level. This could be
done for a number of output mixes. Production
possibility curves could only be approximated if, by
chance, alternatives with similar budget requirements
obtained. This approach generally would result in a
group of alternatives depicted by the A’s in Figure 2.

3. Set the absolute output prices at a variety of levels
and then maximize net revenue with no budget con-
straints. Different budget levels and product mixes
would result from the different absolute magnitude
of the prices. This approach also would generally
result in a group of alternatives depicted by the A’s
in Figure 2.

“In current practice, alternatives often are not developed in a
systematic manner (i.e., they are developed with a combination of
the three different approaches discussed here). This probably oc-
curs because local planning efforts are directly oriented towards
local planning. If local planning efforts are to support a multilevel
national planning analysis, then systematic development of alter-
natives would be especially desirable.




Approaches 2 and 3 generally will not yield groups of
alternatives that can be associated with a particular
budget. It would only be chance that more than one alter-
native would have the same budget level. For the analysis
discussed here, it was judged to be very desirable to have
alternatives placed into groups with the same budgets.

Briefly, this type of grouping produces a model where
successive (each associated with a given budget) produc-
tion possibilities curves are piecewise approximated. Ap-
proaches 2 and 3 yield a scattering of points, each on
a different production possibilities curve. Interpolations
between alternatives that have the same budget level are
viewed differently than interpolations between alter-
natives that have different budget levels. Only approach
1 allows making this distinction.

Another important consideration is that the global
budget will be the constraint that cuts across all local
planning units and thus makes the national model
necessary. Approach 1 is the only one (including com-
binations of the approaches) that allows the analyst to
ensure a particular level of variation in local budgets
across the local alternatives developed. Budgetary varia-
tion in the alternatives is critical to the performance of
the multilevel model. Using either approaches 2 or 3
might result in only very narrow ranges in local budgets
or ridiculously wide ranges in local budgets that leave
too much unknown space between them. Also, with ap-
proach 3, unless considerable information on costs and
output prices is available, meaningless results may be
obtained because of absolute prices being set way out
of scale with costs. Finally, approach 1 is clearly advan-
tageous in terms of model interpretation.

Approach 1 therefore, will be adopted for the
remainder of this discussion. Within this approach,
significant questions remain involving the number of

Timber

Forage

Figure 2.—A two-output, one-time-period, production possibilities
curve for a given local planning unit.

alternatives that are desirable and the specific definition
of the different alternatives included. These questions
are examined in the test case.

Linear Programming Versus Integer Programming
Solutions to the Upper Level Model

Referring to table 2, the point was made that if the up-
per level model is solved with a linear program, X,
through X, may actually take on solution values be-
tween 0 and 1. For example, X, and X, in table 2 might
solve with values of 0.6 and 0.4, respectively. Again, this
is interpreted as a partial selection of each alternative,
the combination of which satisfies the ‘“0-1 model con-
straints.” It is basically a linear interpolation between
two alternatives. The interpolated cost would be only an
approximation of unknown reliability (investigated
below). An alternative approach would be to solve the
upper level model in a way such that only complete alter-
natives can be discretely selected.

Three options should be considered. First is the com-
pletely continuous variable linear program as depicted
in table 2. Second is the option of treating all alternatives
discretely and solving the model with an integer program
where all choice variables are constrained to be zero or
one. This model would look exactly like that in table 2,
except that X, through X, would be constrained to be
integers. The third option would allow interpolations be-
tween alternatives that have the same budget, but would
not allow interpolations between alternatives that have
different budgets. This distinction is important, because
interpolations between alternatives with the same budget
merely create a piecewise approximation of a given pro-
duction possibilities curve. An interpolation between
alternatives with different budgets involves approx-
imating the rate of expansion of the product transfor-
mation curve (with increasing outlay). The first type of
interpolation is different from the second from an
economic point of view, and the former may be more
tenable (safer) than the latter. Table 3 depicts a simple
model of this type. It is similar to that in table 2, but in-
cludes four alternatives (X, — X,) for each local planning
unit. It also includes rows that create the “mixed integer”
model.

Figure 3 depicts the production possibilities map for
a given local planning unit (where a partial selection oc-
curs) with the first option—a continuous variable linear
program. All points between any two alternatives are
allowed (potentially) in the solution. In contrast, figure
4 depicts a similar production possibilities map that
results from the second option—an all-integer program
that treats all alternatives as discrete choices. Only the
discrete alternatives specified in the upper level model
are allowed. The third option is similarly depicted in
figure 5. As indicated previously, this is a compromise
that allows all points between alternatives with the same
budget but does not allow points between alternatives
with different budget levels to enter solution.

With only one global (budget) constraint and linear ob-
jective functions, the distinction between option two and



Table 3.—A simple mixed integer upper level model structure.’

Local planning Local planning
unit 1 unit 2
Budgets Budgets " Integer
1 2 1 variables Outputs Cost Right-hand
X' xI x; x} X XX X5 xX I} 1, I I Timber  Forage Type  side
Timber t t t t t t t t -1 = 0
Forage f f f f f f f f -1 = 0
Cost
(Budget) c c c c c c c c -1 = 0
Mixed 1 1 -1 = 0
integer 1 1 -1 = 0
constraints 1 1 -1 - 0
1 1 -1 = 0
1 1 = 1
1 1 = 1
Objective
function B; B MAX
Global budget 1 = K
constraint

1To conserve space, the subscripted A-matrix (as in table 2) is represented here simply with the “t,” “f,” and "’¢” entries.

option three is moot. That is, under these conditions, op-
tion three will always result in an all-integer solution —
the solution would always be one of the corner points
in figure 5. However, using option three may provide
for considerable computational savings and improved
solvability, relative to option two. Because the tenabil-
ity and usability of options one and three are not yet
clear, they are discussed in the test case also.

Timber

Forage

Figure 3.—A graphical depiction of the production space for a given
local planning unit in a continuous variable linear program upper
level model.

Number of Levels

Another issue concerning the configuration of a multi-
level optimization model involves the number of levels
in the model. In a given institutional setting there may
be requirements for a particular number of levels.
However, if the objective is to approximate a national
optimum, only two levels should be employed.

Timber

Forage

Figure 4.—A graphical depiction of the production space for a
glven local planning unit in an all-integer program upper level
model.



As an example, consider a planning problem with 100
lower level planning units. Assume that there are only
10 discrete alternatives to be considered for each lower
level model. With two levels, the higher level model for
this problem in the form of table 2 would have 1,000 col-
umns. Next consider the insertion of an intermediate
level such that the same problem would be analyzed with
three levels. That is, the lowest level would generate alter-
natives for the intermediate level model, and then the
intermediate level model would generate alternatives for
the national level model. Both the intermediate level
models and the national model would be in the form of
table 2. If each intermediate level planning unit is com-
posed of 10 of the lowest level planning units, then each
of the intermediate level models would have 100 col-
umns. However, if all of the information (alternatives)
in the two-level model is to be retained at the national
level of the three-level system, then each intermediate
planning unit would have to pass up 10' discrete alter-
natives to the national model—every combination of
lowest level alternatives. The national model would then
have 10" columns (10 columns for each of 10 in-
termediate level planning units). If partial selections are
allowed between the discrete alternatives, or if more
alternatives per local planning unit are included, then
the problem gets substantially worse.

If a particular institutional setting requires more than
two levels, this must be weighed against the increased
technical difficulties before adopting either approach.
Again, it is assumed that the objective is to approximate
national optima, not to integrate several levels of plan-
ning. The test case demonstrates that intermediate level
information can easily be reported (or for that matter
constrained) in the two-level approach.

In summary, both linear programming and integer pro-
gramming versions of the upper level model in a two-

Timber

Forage

Figure 5.—A graphical depiction of the production space for a given
locO:I Iplannlng unit in a mixed-integer program upper level
model.

level system should be tested for suboptimization and
resource misallocation. Also, different numbers and
types of local alternatives might be included in the up-
per level models, and these options should also be tested.
These local alternatives will be generated by constrain-
ing local cost (budget) to a variety of levels and maximiz-
ing revenue with a variety of relative timber and forage
output prices.

A Test Case

The basic approach to the test case was to locate a
suitable single-level global model that would serve as a
standard for comparison, and then to build multilevel
(two-level) models out of the global model. The lower
level models in the multilevel system were built simply
by subdividing the global model (Appendix 1)
geographically. The alternatives for the upper level
model(s) were generated by repeatedly optimizing the
subdivisions (local planning units) with different local
budget constraints and different relative price vectors
in the revenue-maximizing objective function. Next, the
upper level model(s) were tested for suboptimization
with a variety of relative price vectors and global budget
constraints. A mathematical description of the models
used in the test case is presented in Appendix 2.

The Global Model

The model used for the test case was the National In-
terregional Multiresource Use Model (NIMRUM) for the
land base described here. The NIMRUM model (Ashton
et al. 1980) was developed for use by the USDA Forest
Service to satisfy the requirements of the Forest and
Rangeland Renewable Resources Planning Act of 1974
(RPA). A complete description is presented in Appen-
dix 1. Its basic structure is similar to that depicted in
table 1. The data were developed using an interdiscip-
linary team approach. The participants in the inter-
disciplinary teams were mostly Forest Service
employees, together with some other federal agency and
state government individuals.

The land base used in developing the test case models
included all forest and range lands in USDA Forest Serv-
ice Regions 4, 5, and 6, which includes all of or major
portions of Idaho, Wyoming, Utah, Nevada, California,
Oregon, and Washington. This large area was chosen to
have a wide variety of production capabilities and
ecosystem types. Because the context of the test case is
a system for national planning analyses, this was con-
sidered to be an important test characteristic.

In all of the multilevel model tests, the local planning
units are the same. There are 14 of them consisting of
the 7 states divided into National Forest System and non-
Forest System lands. This was merely a convenient way
to define a reasonable number of local planning units.
The analysis is organized simply to emulate a large-scale
resource planning problem. No policy implications are
intended regarding the actual production or cost results



or regarding any apparent comparisons between dif-
ferent lands or ownerships.

Ten Different Upper Level Models

Two terms are defined for the discussion that follows.
First, model “type” indicates whether the upper level
model is a continuous variable linear program, or an in-
teger program. Second, model “configuration” indicates
the number and breadth of the different alternative out-
put vectors included in the upper level model for each
local planning unit.

Five different upper level model configurations were
constructed, each with a different set of alternatives in-
cluded for each local planning unit. Each configuration
was constructed for the two solution types: continuous
variable linear programming and integer programming.
This yielded 10 different upper level models. As dis-
cussed previously, a mixed integer formulation that
always yields an all-integer solution was used for com-
putational efficiency.

Forage and stumpage prices vary significantly across
the global model land base (Forest System Regions 4, 5,
and 6). The NIMRUM model assumed different prices
for each region. This assumption was adopted in this
study also. This amounts to defining different timber and
forage outputs for each region. In any actual national
planning effort, commodities probably would not be
homogeneous across the entire nation. Regional pricing
provides a simple way of depicting this pragmatic com-
plication. In an actual planning problem, a simple
regional commodity definition may not be the best ap-
proach. The base prices, based on those used in USDA
Forest Service (1980), are as follows.

Timber Forage

$/1,000 ft3 $/AUM
Region 4 303 4.96
Region 5 833 6.00
Region 6 1146 5.90

The relative price vectors used in building the multilevel
model(s) are all multiples of the base prices, and thus re-
tain the proportional regional price differences.

A pool of alternatives for each local planning unit was
developed, from which the different upper level models
could be built. First, a “base’” run was generated for each
local planning unit. These were unfettered (no budget
constraint) local maximizations of net value, using the
prices described. Based on the costs (budget outlays) for
each local planning unit in these base runs, the follow-
ing four budgets were defined for each local planning
unit: (1) 50% of the local base budget; (2) 75% of the base
budget; (3) 100% of the base budget; and (4) the local
budget required when output prices were doubled and
an unfettered net value optimization was run. The last
option was included to permit a greater than base level
production capability that is not arbitrarily high, but in-
stead is associated with particular price increases.

After the four budget levels were defined for each local
planning unit, sets of points on the production possibility

frontiers were located by fixing the budget level and max-
imizing weighted outputs. In this context the weights can
be viewed as relative prices. Five different relative price
vectors were constructed. Because variation in relative
prices is desired, the forage prices were held at their base
levels. Each of the relative price vectors was run with
each local budget level to generate a pool of 20 alter-
natives for each of the 14 lower level models.

Five different upper level model configurations were
built from this pool of local alternatives, for which the
following codes were used.

Local pricing code  Local relative price vectors

1 Stumpage prices at 10 times the
base stumpage prices

2 Stumpage prices at 3 times the
base stumpage prices

3 Stumpage prices at base stump-
age prices

4 Stumpage prices at 1/3 of the
base stumpage prices

5 Stumpage prices at 1/10 of the

base stumpage prices

Local budget level

1 50% base

2 75% base

3 100% base

4 Twice the base price net value
maximization budget

Local budget code

The five different upper level model configurations
(labeled 1, 2A, 2B, 3, and 4) included the following alter-
natives for each local planning unit.

Total number
of alternatives

Local Local for each
budgets prices local planning
Configuration included included unit
1 1,2,3,4 1,2,3,4,5 20
2A 1,3,4 1,3,5 9
2B 1,3,4 2,3,4 9
3 1,4 1,5 4
4 1,3,4 3 3

Nine Tests of the Upper Level Models

The global model and each of the 10 upper level models
were solved with three different global budget con-
straints,® and three different relative price vectors for
each global budget constraint. Comparing these solutions
provides the tests for suboptimality in the upper level

5The term “global budget constraint” applies to a fixed budget
level for the entire planning area (all 14 local planning units)."This
““global budget constraint” is applied to both the “global” model
and the “multilevel’”’ or “upper level” models.




models. The three global budgets for testing purposes
were

Low: 0.625 times the sum of local base (code 3)

budgets

Medium: 0.875 times the sum of local base (code 3)
budgets

High: The midpoint between the sum of local

base (code 3) budgets and the sum of code
4 local budgets.

The three different relative price vectors used in testing
the upper level models were:

0.2 times the base
timber prices

Base timber prices

5 times the base
timber prices.

Low relative timber prices:

Medium relative timber prices:
High relative timber prices:

All timber prices are taken with the base forage prices.
The partial selections that resulted from linear pro-
gramming solution of the upper level models also were
analyzed to determine the accuracy of the interpolated
cost implied. All nine tests were performed for both
linear programming solutions and integer programming
solutions of the five different upper level model con-
figurations. Thus, the global model was solved nine
times, and each of the 10 upper level models was solved
nine times with budgets and relative prices varied
systematically. Comparing these solutions indicates the
tendency of the upper level models to suboptimize.

Results and Discussion

Objective Function Test Results for Linear
Programming Solution of the Upper Level Models

Table 4 presents a set of ratios between the five dif-
ferent upper level linear program solution objective func-
tions and the same for the global model. This gives a
general picture of the suboptimality introduced by the
multilevel alternative to global optimization.

For the Model 1 configuration, the upper level model
objective function solution value is clearly very close to

the global one. The only instance where the suboptimal-
ity (as measured here) is more than 1% is in the test us-
ing the low budget and high relative timber prices. This
test is stressing the multilevel model severely and is still
within 4% of the global model. On the basis of these
results, if a model configuration as large (20 alternatives
per lower level planning unit) as Model 1 can be used,
relatively reliable optimality results should be expected.
That is, these results indicate minimal suboptimality for
Model 1. .

Models 2A and 2B (which each have nine alternatives
for each lower level planning unit) do not perform much
worse. The only instance where the suboptimality is
more than about 2% is, again, the test with the low global
budget constraint and the high relative timber price. In
this instance, the suboptimality is about 5% for each
model. Again, minimal suboptimality has occurred,
based on these figures.

The fourth column—applying to Model 3—is less en-
couraging. This model had only four alternatives per
local unit, and only two different local budget levels were
included for each lower level land unit. This configura-
tion resulted in suboptimization as much as 13.5% and
only rarely resulted in suboptimization less than 5%.

In contrast, the last column—applying to Model 4—is
more promising. This model had only three alternatives
for each lower level land unit, and yet performed better
than Model 3. The reason is that Model 4 included three
different budget levels for each local planning unit.
Because the global budget constraint creates the need
for higher level planning and modeling in the first place,
it is reasonable that more variation in the budget alloca-
tion across lower level land units would be more impor-
tant than sheer number of lower level alternatives.

Other implications are evidenced by comparing the dif-
ferent columns in table 4. Models 2A and 2B both includ-
ed nine alternatives for each local planning land unit,
and the suboptimality results are essentially the same.
Remembering that the only difference between Models
2A and 2B are the price vectors used in developing the
local level alternatives, it is apparent again that budget

_variation across lower level alternatives is more impor-
tant than price vector variation. This is equivalent to say-
ing that for national optimization (as formulated here),

Table 4.—Ratios of objective function solution values of different upper level linear
programming models to those of the global model.

Global Relative
budget timber Upper level linear programming
constraint prices 1 2A 2B 3 4

High High 0.9908 0.9900 09869 0.9839 0.9723
High Medium .9942 .9942 .9942 9276 .9942
High Low .9931 9911 .9897 .9683 9725
Medium High .9921 .9891 .9881 9175 .9556
Medium Medium 9977 .9898 .9898 .8650 .9898
Medium Low .9963 9918 .9925 .9498 .9633
Low High .9632 9517 .9461 .9093 .8983
Low Medium .9922 .9826 .9826 .8850 .9826
Low Low .9960 .9928 .9936 .9063 9415
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it is more important for local level analyses to study the
effects of varying budgets than to study alternative out-
put mixes at a given budget. Even in tests with relative
timber prices far different (by a factor of 5) than the single
price vector used in developing Model 4, it performs
reasonably well.

In comparing Models 2A and 3, note that Model 3 is
the same as Model 2A, except that in Model 3 the alter-
natives for each local planning unit with the middle local
budget levels and the middle relative price vectors were
not included. Thus, Model 3 only includes the “outside”
alternatives, leaving out the “middle” ones. This results
in Model 3 performing particularly poorly for the
medium global budget and the medium relative timber
price tests. Because these tests are the least extreme, and
perhaps the most clearly relevant ones, this is a serious
deficiency. The implication is that leaving out central
alternatives in developing a multilevel model is not ad-

visable, unless only extreme solutions are desired—not

a likely situation at all.

In comparing Models 2A and 4, note that Model 4 is
the same as Model 2A, except that in Model 4 the alter-
natives for each local planning unit with the high and
low relative timber prices are not included. This exclu-
sion results in increased suboptimality, but not nearly
as much as was encountered in Model 3. This cor-
roborates the earlier conclusions from comparing
Models 3 and 4 and from comparing Models 2A and 2B.

Comparing Model 2B with Models 3 and 4 yields
similar conclusions. If a model such as 2B is not feasi-
ble, then reduction in size along the lines of Model 4 ap-
pears to be safer than along the lines of Model 3.
Retention of ’middle” lower level alternatives and varia-
tion in local budget levels appear to be the most impor-
tant factors in designing the configuration of the
multilevel model, based on these tests.

The relatively good performance of Model 4 is en-
couraging, especially considering that the test case only
involves two outputs and one time period. From a linear
programming perspective, increasing the number of time
periods and increasing the number of outputs are
equivalent complications—for example, tracking timber
over five time periods is modeled by simply defining five
outputs: timber in time period one, timber in time period
two, etc. Thus, in a practical planning situation, the
number of outputs is likely to be much larger than two
because of both a more complicated production system
and the inclusion of different time paths of production
(scheduling). As the number of outputs increases, the
number of lower level land unit alternatives that would
have to be generated increases dramatically for a
multilevel model such as Models 1 through 3. For exam-
ple, to emulate Models 2A and 2B that include three (two-
output) price vectors for a case with 15 outputs (perhaps
three outputs over five time periods) would require tak-
ing 305D or 4.8 million price vectors in combination
with each local budget level. Model 4, however, can be
emulated with one price vector taken in combination
with each local budget level, regardless of the number
of outputs or time periods.
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Cost Analysis on Partial Selections

As established earlier, each solution to each multilevel
model presented in table 4 involves one ‘‘partial selec-
tion” of two lower level alternatives, for a single local
planning unit. A natural concern would be that the cost
estimate for that particular lower level land unit would
be inaccurate (overestimated)—it is a linear interpolation
between the costs associated with the two lower level
alternatives (Hof et al. 1985). Thus, for a chosen set of
these partial selections, the actual cost of the interpolated
output vector was determined by rerunning the lower
level model (minimizing cost with output levels con-
strained to the appropriate levels). Even if the inter-
polated cost is nearly correct, if the discrete alternatives
were implicitly evaluated and approved by the local plan-
ning unit officials, then the partial selection may still be
undesirable or infeasible for reasons not captured in the
model.

Table 5 presents the results of the cost analysis on the
selected partial selections. For each upper level linear
program configuration (1, 2A, 2B, 3, 4), two solutions and
their ancillary partial selections were selected—one with
a partial selection close to an even 50-50 split and one
with a partial selection close to an 80-20 split. The first
column in table 5 indicates the model configuration that
the partial selections came from. The second column in-
dicates the local planning unit where the upper level
model chose to make the partial selection. The third col-
umn indicates the two local alternatives (defined by local
budget level and price set) that were partially selected.
The fourth column indicates the percent of each alter-
native that was partially selected. The fifth column in-
dicates the estimate of cost for the partial selection that
was calculated (in the upper level model solution) as a
linear interpolation between the two given alternatives’
costs. The sixth column presents the actual minimum
cost obtained by rerunning the lower level model with
a cost minimization objective function and with timber
and forage constrained to the levels implied by the par-
tial selection. The last column indicates the percent error
in the interpolated cost estimate, relative to the actual
minimum cost.

All of the interpolated cost estimates are relatively ac-
curate (within 4%), except for the two partial selections
tested from the Model 3 configuration. This is not a sur-
prising result, given that the Model 3 configuration
specified only two (extreme) budget levels for each lower
level model. This characteristic caused the Model 3 con-
figuration to perform poorly from the viewpoint of global
optimization, and also appears to cause it to perform
poorly from a viewpoint of the accuracy of the inter-
polated cost estimate implied in a partial selection.
Despite this, it is encouraging that with upper level
model configurations that include variation in local
budget levels, the cost estimate implied by a partial selec-
tion may not be terribly inaccurate. Pragmatic considera-
tions may still make a partial selection unusable; but
based strictly on the cost analysis in table 5, it may not
be thoroughly untenable.



Table 5.—Cost analysis on certain partial selections from the upper level linear programming solutions.

Local planning

Alternatives in Partial Selection

Error in

interpolated Actual interpolated

Model unit Budget/Price set Percent in solution cost estimate minimum cost cost estimate
----------- dollars —=====-=---- percent

1 Oregon/National 4/4 85 333,679,987 323,891,044 3.02
forest lands 3/5 15

2/3 50 219,770,010 218,666,081 0.50
3/3 50

2A Washington/National 313 87 99,280,024 97,614,012 1.71
forest lands 13 13

3/5 55 81,979,976 76,116,690 3.62
1/5 45

2B Oregon/Other 3/13 89 302,479,996 299,427,812 1.02
lands 4/3 11

4/2 59 373,720,025 364,972,040 2.40
32 41

3 Oregon/National 41 73 287,469,036 259,139,480 10.93
forest lands 11 27

n 54 228,628,158 202,504,350 14.14
4n 46

4 Oregon/National 1/3 87 142,469,000 138,589,650 2.80
forest lands 3/3 13

313 58 292,219,956 287,234,960 1.74
4/3 42

It was anticipated that the 80-20 partial selection cost
estimates would be more accurate than the 50-50
counterparts, because the 80-20 ones are proportionately
closer to a point with known cost. In table 5, this was
not always the case. Comparing the two partial selections
for the Model 1 configuration, for example, the cost er-
ror for the 85-15 partial selection is about six times that
for the 50-50 partial selection. The apparent reason for
this result is that the production function being modeled
is not close to being homothetic, and does not exhibit
constant returns to outlay. This would indicate that er-
rors in interpolated cost estimates are not very system-
atic, and would be difficult to predict. Again, information
concerning response to changing local budgets is very
important. In the partial selections tested for Model con-
figurations 2A, 2B, and 3, the budget codes involved in
the partial selection for each local planning unit are the
same, and as expected, the interpolated cost estimates
for 80-20 partial selections are more accurate than for
the 50-50 partial selections. In the partial selections
tested for the Model 4 configuration, different budgets
are involved, and the 80-20 partial selection cost estimate
is, again, less accurate than the 50-50 counterpart.

Objective Function Test Results for Integer
Programming Solution of the Upper Level Models

Table 6 presents a set of ratios similar to those in table
4, except that the numerators of these ratios are the ob-
jective function solution values arrived at through integer

programming solution of the upper level model (so as
to avoid the partial selection). The differences between
these ratios and the equivalent ratios in table 4 are also
given, in parentheses.

One simple but important conclusion can be derived
from table 6. The only instance where a signficant loss
in the objective function takes place because of avoiding
the partial selection is in Integer Model 3, which did not
perform particularly well in table 4 in the first place.
Even for Model 3, the integer constraints never cause
an increase in suboptimality (as measured here) of more

- than 5 percentage points. Otherwise, the integer solu-
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tion approach does not significantly affect the conclu-
sions drawn on table 4. The results in tables 4 and 6 are
slightly conservative. Table 4 is slightly conservative
because the interpolated cost estimates for the partial
selection are always high. Table 6 is slightly conservative
because the integer solutions yield a very small slack
(never more than 0.5%) on the budget constraint.
Given the information in table 5, and the possibility
that problems other than cost errors may be involved in
trying to use the partial selections implied by the models
in table 4, the integer solution approach seems to be sup-
ported in terms of overall suboptimality. Given the mixed
integer model formulation discussed earlier, it also seems
possible to solve relatively large upper level integer
models with relatively few integer variables—so com-
putational problems should not be terribly serious.
However, the case example involves only one global con-
straint. In cases with more global constraints, the
discrepancy between linear programming and integer



Table 6.—Ratios of objective function solution values of different upper level integer program-
ming models to those of the global model. The numbers in parentheses are the differences
between these ratios and the ratios in table 4.

Giobal Relative
budget timber Upper level integer programming model
constraint prices 1 2A 2B 3 4
High High 09900 09885 0.9846 0.9816  0.9708
(.0008) (.0015)  (.0023) (.0023) (.0015)
High Medium .9939 .9939 .9936 .9273 .9936
(.0003) (.0003) (.0006) (.0003)  (.0006)
High Low .9924 .9883 .9883 .9656 971
(.0007) (.0028) (.0014) (.0027) (.0014)
Medium High .9916 9872 9863 .9056 9546
(.0005) (.0019) (.0018)  (.0019)  (.0010)
Medium Medium .9966 .9894 .9894 .8608 .9894
(.0011)  (.0004) (.0004) (.0042) (.0004)
Medium Low .9963 .9895 9895 .9453 .9625
(.0000)  (.0023) (.0030) (.0045)  (.0008)
Low High .9589 9477 9422 .8981 .8941
(.0043)  (.0040) (.0039) (.0112)  (.0042)
Low Medium .9904 9775 9775 .8666 9775
(.0018)  (.0051)  (.0051) (.0184)  (.0051)
Low Low .9952 .9928 .9928 .8598 9415
(.0008) (.0000) (.0008) (.0465)  (.0000)

programming solutions may be larger. This point also
applies to all subsequent comparisons between linear
programming solutions and integer programming
solutions.

Total Output Test Results

Tables 7 and 8 present ratios between total timber and
forage output solution values for the different upper level
models and the equivalent solution values from the global
model. The integer programming ratios are given in
parentheses under the linear programming ratios in both
tables. With several exceptions (especially the case of
forage with the low global budget constraint and the high
relative timber price), the global model’s output mix is
approximated relatively closely by both the linear and
integer programming upper level models. The approx-
imation is generally best with the medium relative timber
price. This is not surprising, because the high and low
relative timber prices are quite extreme and would thus
tend to stress the model results significantly. With the
low global budget constraint and high relative timber
prices, forage is essentially no more than a residual out-
put, which explains the highly unstable results under
those conditions. The model configuration appears
generally to affect the output mix only slightly, although

~ Models 3 and 4 exhibit some occasional instabilities,
especially in forage output levels. Also, it is very difficult
to say that the linear programming models perform any
differently, in general, than the integer programming
counterparts.
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The results presented in tables 7 and 8 are based on
a rather gross aggregation of regional outputs. Because
the regional outputs were priced differently to represent
the qualitative and other differences between regional
outputs, aggregating them as in tables 7 and 8 is tech-
nically inappropriate. Nonetheless, tables 7 and 8 sug-
gest that within a reasonable range of relative prices, the
multilevel modeling approach should perform rather
well in approximating the global output mix that would
be arrived at if a single-level global optimization were
possible. This conclusion is especially tenable with
moderately constraining global budget constraints and
with relative price vectors not too far from those used
in developing the multilevel model alternatives. With the
more extreme relative prices tested, the results are far
less promising.

Regional Output and Cost Allocation Test Results

The results from Models 2A and 4 were chosen for
presentation to indicate the reasonable range of regional
and lower level output solution results. The Model 1 con-
figuration, with 20 alternatives per local planning unit,
is probably too “optimistic” for any situation that in-
volves more than two outputs and one time period.

Tables 9 and 10 present ratios between regional timber
and forage output solution values, respectively, for the
linear and integer (in parentheses) versions of Models
2A and 4 and the equivalent solution values from the
global model. The regional timber and forage outputs are
significant principally because these are at the highest




Table 7.—Ratios of total timber solution values of different upper level linear (integer)
programming models to those of the global model.

Global Relative i .
budget timber Upper level linear programming
constraint prices 1 2A 2B 3 4
High High 0.9776 0.9899 0.9422 0.9715 0.9129
(.9895) (.9957) (.9328) (.9465) (.9259)
High Medium .9754 9754 .9754 9349 .9754
(.9885) (.9885) (-9889) (.9341) (.9889)
High Low 9916 .9482 1.0496 .8894 1.1040
(.9942) (.9283) (1.0332) (.9035) (1.0912)
Medium High .9708 9777 .9139 .8975 .8383
(.9645) (.9636) (-9093) (.9677) (.8419)
Medium Medium .9978 1.0027 1.0027 .9262 1.0027
(1.0306) (.9923) (.9923) (.9049) (.9923)
Medium Low .9603 .9008 1.0265 .8406 1.1088
(.9657) (.9254) (1.0054) (.8124) (1.1130)
Low High 9783 .9755 .8986 .9404 .8049
(1.0139) (.9855) (.9142) (.9437) (.8205)
Low Medium 1.0127 1.0089 1.0089 1.0007 1.0089
(1.0268) (1.0515) (1.0515) (1.0656) (1.0515)
Low Low .9873 9341 1.0330 .8580 .8949
(.9882) (.9315) (1.0338) (1.0389) (.8949)

Table 8.—Ratios of total forage solution values of different upper level linear (integer)
programming models to those of the global model.

Global Relative
budget timber Upper level linear programming
constraint prices 1 2A 2B 3 4

High High 0.9642 0.6074 1.8045 0.5018 2.0045
(1.0189) (.7797) (1.5083) (.7797) (2.1008)

High Medium 1.0006 1.0006 1.0006 .7375 1.0006
(.9982) (.9982) (.9970) (.7399) (.9970)

High Low .9907 1.0104 .9649 1.0230 .9248
(.9907) (1.0159) (.9638) (1.0016) (.9227)

Medium High 9742 4314 2.3944 .4963 3.1418
(1.0204) (.5739) (2.3877) (.8656) (3.1750)

Medium Medium 1.0178 1.0357 1.0357 .7503 1.0357
(1.0271) (1.0338) (1.0338) (.7927) (1.0338)

Medium Low 1.0022 1.0157 .9766 1.0071 .9240
(.9995) (1.0147) (.9718) (.9929) (.9234)

Low High 2.6687 2.1025 11.7926 2.1589 16.4095
(2.7358) (2.6137) (11.9777) (2.4527) (16.6242)

Low Medium .9897 .9994 .9994 .7949 .9994
(.9533) (1.0073) (1.0073) (.8131) (1.0073)

Low Low 9919 1.0038 .9849 .9094 .8949
(.9951) (1.0032) (.9838) (.8512) (.8949)
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Table 9.—Ratios of regional timber output solution values in upper level linear (integer)
programming Models 2A and 4 to those of the global model.}

Global  Relati
bdﬁ',;:. tler:bevre Model 2A Model 4

constraint price Region 4 Region5 Region 6 Region4 Region5 Region 6

High High 0.9778 0.7417 1.0304  0.9084 0.0925 1.0331
(1.0343) (7417)  (1.0185)  (1.0044) (0925)  (1.0185)
High Medium 9259 4927 1.0132 9259 4927 1.0132
(.9976) (4927)  (1.0066)  (.9990) (4927)  (1.0066)
High Low 1.0224 5122 9578  1.2520 3149 1.1167
(1.0403) (.1867) (9487)  (1.1771) (3149)  (1.1216)
Medium  High 8538 1.9292 9934 6071 772 9584
(8045)  (1.9292) (9934)  (6354)  (0.0000) (.9584)
Medium Medium  1.1722 1.1785 9442 11722 1.1785 9442
(1.1116)  (1.1785) (9494) (1.1116)  (1.1785) (.9494)
Medium Low 8933 7401 9084  1.1141 1.2487 1.1022
(1.0307) (.7401) (8837) (1.1565)  (1.2487)  (1.0907)
Low High 1.0405 2.8935 8975 .7660 0.0000 8416
(1.1236)  (2.8935) (8829)  (.8737)  (0.0000) (.8263)
Low Medium  1.1250 ® 9309  1.1250 o .9309
(1.4165) () (8892)  (1.4165) () (.8892)
Low Low 9173 w 9145  1.1537 o 1.1633
(.9101) () (9145)  (1.1578) () (1.1615)

1The « symbol indicates that no production of timber occurred in the global model solution
for that region.

Table 10.—Ratios of regional forage output solution values in upper level linear (integer)
programming Models 2A and 4 to those of the global model.

Global Relati
budg:t tlmbevre Model 2A Model 4

constraint  price Region 4 Region 5 Region 6 Region 4 Region5 Region 6

High High 0.7778  0.07068 05591  1.3005 5.6815 1.4573
(1.1452)  (.07068) (4483) (1.4741)  (5.6815)  (1.4579)

High Medium 9922 1.0022 1.0099 9922 1.0022 1.0099
(9834)  (1.0022)  (1.0153)  (9789)  (1.0022)  (1.0153)

High Low 1.0029 1.0011 1.0420 9478 9897 7544
(1.0030)  (1.0014)  (1.0663)  (.9416) (.9897) (.7541)

Medium High 9577 06742 1309 2.5662 9.9011 1.6012
(1.3383)  (.06742) (1309) (2.7381)  (9.6907)  (1.6012)

Medium Medium  1.0267 .9985 11734  1.0267 9985 1.1734
(1.0212) (9985  (1.1731) (1.0212) (9985  (1.1731)

Medium Low 9993 1.0001 1.0706 9449 9884 7624
(9983)  (1.0001)  (1.0681)  (.9442) (.9884) (.7628)

Low High 11.0774 4235 2660 29.6089  60.8789 5.8909
(14.1740) (.4235) (2519) (30.7981) (60.8789)  (5.9172)

Low Medium  1.0365 9978 9389  1.0365 9978 9389
(1.0769) (.9978) (9156)  (1.0769) (.9978) (.9156)

Low Low 9877 1.0025 1.0283 9349 9907 6555

(.9863) (1.0025) (1.0283) (.9353) (.9907) (.6548)
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level of aggregation that is clearly tenable. And, the
regional output reallocation implied by the multilevel
solutions (relative to the global solution) is actually very
similar to the local planning unit reallocations. In com-
paring the multilevel output solution values with the
global output solution values, the local planning units
within each region tend to “move together.”

In studying tables 9 and 10, it is clear that definite in-
stabilities occur in the multilevel solutions regarding
regional output mixes. When the medium relative timber
prices are used, the multilevel solution emulates the
global solution rather closely. In other cases, however,
the regional output levels arrived at by the multilevel
models vary from their counterparts in the global model
by factors as large as 60. Because, in developing the
multilevel models, a price vector was used that was iden-
tical to the “medium” price vector used in these tests,
it can be concluded that the multilevel model will only
approximate the global optimal regional output levels
with price vectors close to those used in developing the
multilevel model. In tables 9 and 10, the results are most
unstable with the extreme budget constraints taken in
combination with the extreme relative timber prices;
therefore, it appears that there is an interaction between
these two factors. Model 2A does not perform much dif-
ferently than Model 4 in tables 9 and 10. Even Model
1 does not perform much differently. For example, the
Model 1 equivalents to the first rows in tables 9 and 10
are as follows.

Region 4 Region 5 Region 6
0.9473 0.74170 1.0228
1.1566 0.07068 1.0576

Table 9
Table 10

Again, it does not seem to make very much difference
whether the multilevel model is solved in a linear pro-
gramming or integer programming format—each version
performs slightly better sometimes and slightly worse
other times. The basic conclusion appears to be that
unless relative price vectors used in the upper level op-
timization are close to one of the price vectors used in
building the upper level model, the multilevel solution
regional outputs may be significantly different from the
true global optimal figures. With anything other than a
moderately constraining global budget constraint, this
instability is potentially serious, even with the least
stressing price vectors. It is important, however, that the
multilevel model is capable of emulating the global model
in at least the least stressing circumstances. In many
planning problems, the price vectors that are to be used
are known ahead of time, and only moderately constrain-
ing global budget constraints (relative to an unfettered
maximization of net worth) are relevant.

Table 11 presents ratios between the regional budget
allocations from the linear and integer (in parentheses)
versions of Models 2A and 4 and the equivalent solution
values from the global model. These are reported sim-
ply for comparison with the results in tables 9 and 10.
The regional budget allocations in the multilevel models
are somewhat closer to their counterparts in the global
model than are the associated output results. Runset 2A
and 4 perform more or less similarly, and, again, the in-
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teger programming solution only performs worse than
the linear programming approach in a few cases. With
the high relative timber prices, the budget allocations
became more unstable in the multilevel model. Overall,
the results in table 11 appear to have averaged out some
of the more severe results in tables 9 and 10, but basically
demonstrate similar problems in the multilevel models,
especially with the more extreme price sets.

Local Planning Unit Qutput and
Cost Allocation Test Results

Table 12 presents ratios between local planning unit
timber and forage output solution values for upper level
Models 2A and 4 and the equivalent solution values from
the global model. Because the results in table 12 are from
tests with the medium relative timber prices and the
medium global budget constraint, they represent an op-
timistic situation. With medium relative timber prices
and the medium global budget constraint, the solutions
of Models 2A and 4 are identical. Even in this optimistic
case, the multilevel models can indicate local level out-
put solution values as much as 250% different from the
global solution values. As before, the integer program-
ming format generally does not yield results that are
much different from the linear programming format. An
important exception follows.

Most of the deviation between the global timber out-
put solution values and those from the multilevel model
solutions seems to be concentrated in one local planning
unit—Oregon “other” lands. That is, the timber outputs
on all other planning units are greater than those in the
global model, whereas timber is “underproduced” on the
Oregon “other” lands. With the integer programming
solution, this also happens in the Wyoming NFS lands,
and the overproduction on Wyoming “‘other” lands is
exacerbated. It is clear that any solution to the multilevel
model would have to be subject to some careful examina-
tion by the local level planners, and no solution should
ever be taken as absolute. Such post-solution evaluation
and adjustment would actually be required no matter
what sort of analysis was undertaken.

Table 13 presents ratios of cost solution values for the
same set of tests as in table 12. Again, even in this op-
timistic case (medium global budget constraint, medium
relative timber prices), it would appear that the multilevel
model may result in a budget allocation across local plan-
ning units that is significantly different from that which
would be arrived at through a global model. Again, the
“error”’ seems to be concentrated in much the same way
that it was in table 12 for timber outputs. With the in-
teger programming solution approach, the local budgets
chosen are different in two local planning units besides
the one where the partial selection occurred in the linear
programming format. This results in a radically different
budget for these local planning units, especially the
Wyoming NFS planning unit. It would appear that the
linear programming upper level model is significantly
more stable than the integer programming approach in
terms of local planning unit budget allocations. To a



Table 11.—Ratios of regional cost allocations in upper level linear (integer)
programming Models 2A and 4 to those of the global model.

Global

Relative

budget timber Model 2A Model 4

allocation price Region 4 Region5 Region6 Region4 Region5 Region 6

High High 0.9325 0.6890 1.0682 1.0373 0.4258 1.1061
(1.1600) (.6890) (1.0408)  (1.2802) (.4258) (1.0773)

High Medium .9090 .8370 1.0381 .9090 .8370 1.0374
(.9929) (.8370) (1.0263) (.9853) (.8370) (1.0263)

High Low 1.1020 8442 1.0180 1.0921 .6600 1.0576
(1.1319) (.6600) (1.0504) (.9895) (.6600) (1.0662)

Medium High .8148 2.1999 9710 7432 24124 9710
(.8132) (2.1999) (.9710) (.8093) (2.1999) (.9710)

Medium  Medium 1.2051 1.0206 .9621 1.2051 1.0206 .9621
(1.1529) (1.0206) (.9704)  (1.1529) (1.0206) (.9704)

Medium Low .9363 .9833 1.0203 .9300 .9833 1.0219
(1.0875) (.9833) (.9816) (.9745) (.9833) (1.0056)

Low High 1.4230 4.2740 .8655 1.4230 4.2740 .8655
(1.6958) (4.2740) (.8428) (1.6869) (4.2740) (.8428)

Low Medium 1.1472 1.1294 .9305 1.1472 1.1294 .9304
(1.4463) (1.1294) (.8710)  (1.4463) (1.1294) (.8710)

Low Low .9339 1.1023 .9858 9272 1.1023 .9882
(.9321) (1.1023) (.9858) (.9321) (1.1023) (.9858)

Table 12.—Ratios of “local planning unit” output solution values occurring in both upper level
Models 2A and 4 to those of the global model (medium global budget constraint
and medium relative timber prices).

Ownership
(NFS = National

Upper level linear

programming solution

Upper level integer
programming solution

State Forest System) Timber Forage Timber Forage
Idaho NFS 1.1722 1.2285 1.1722 1.2285
Other 1.0010 1.0000 1.0010 1.0000
Wyoming NFS 1.2646 1.1770 .7445 .8199
Other 2.7601 .9651 3.4869 .9756
Utah NFS 1.0071 .9996 1.0071 9996
Other 1.3025 .9855 1.3025 .9855
Nevada NFS 1.0000 1.0012 1.0000 1.0012
Other 1.0000 1.0240 1.0000 1.0240
California NFS 1.2032 9940 1.2032 .9940
Other 1.1341 .9996 1.1341 .9996
Oregon NFS 1.0980 .9526 1.0980 .9526
Other .6333 1.1496 6333 1.1496
Washington NFS 1.04421 0.9507' 1.0819 .9342
Other 1.0120 1.0120 1.3317

1.3317

1Local planning unit where partial selection occurred in upper level linear programming

solution.
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Table 13.—Ratios of local planning unit cost allocations in both up?er level Models 2A and
4 to those in the global model and lower level budget code selected' (medium global budget
constraint and medium relative timber prices).

Upper level linear Upper level integer
Ownership programming solution programming solution
(NFS = National Cost Selected Cost Selected

State Forest System) allocation budget allocation budget
Idaho NFS 1.4276 3 1.4276 3
Other 1.0005 3 1.0005 3
Wyoming NFS 1.4326 3 .7163 1
Other 1.3745 3 1.6920 4
Utah NFS 1.0069 1 1.0069 1
Other 1.0628 3 1.0628 3
Nevada NFS 1.0044 3 1.0044 3
Other 1.0883 3 1.0883 3
California NFS 1.0641 3 1.0641 3
Other 1.0077 3 1.0077 3
Oregon NFS 1.1561 3 1.1561 3
Other 6019 1 .6019 1
Washington NFS 1.1198 .13(1) + .87(3) 1.1956 3
Other 1.0716 3 1.0716 3

1The lower level price code 3 was selected for all local planning units, in all solutions with
the medium global budget constraint and medium relative timber prices.

Table 14.—Ratios of a selected local planning unit (Idaho National Forest System) output and
cost solution values in upper level linear (integer) programming Models 2A and 4 to those of
the global model.

Global Relative Model 2A Mode! 4

budget timber Cost Cost
constraint price Timber Forage (budget) Timber Forage (budget)
High High 09576  0.2169 0.8750 0.8772 2.0877 0.8750
(.9576)  (.2169) (.8750) (1.0513)  (2.1371)  (1.3111)
High Medium .8955 9771 .8057 .8955 9771 .8057
(.8955)  (.9771) (.8057) (.8955) (.9771) (.8057)
High Low 1.0369  1.0268 1.2210 1.1912 .8803 1.2210
(1.0369) (1.0268)  (1.2210) (.9940) (.8599) (.8149)
Medium High .8378 4277 7141 6756 4.1356 5299

(.7376)  (.2876) (.5299) (.6756)  (4.1356) (.5299)

Medium Medium 11722 12285  1.4276 14722 12285  1.4276
(1.1722) (1.2285)  (1.4276)  (1.1722)  (1.2285)  (1.4276)

Medium Low 8744 9984 8327 1.0049 8614 8327
(1.0483) (1.0286)  (1.2476)  (1.0049)  (.8614)  (.8327)

Low High 9074 7279 8443 8311 10.4659 8443
(9074)  (7279)  (.8443) (8311) (10.4659)  (.8443)

Low Medium 10722  1.0570  1.1291 10722  1.0570  1.1291
(1.4920) (1.6987) (2.2582)  (1.4920) (1.6987)  (2.2582)

Low Low 9797  .9897  1.0209 1.2391 8882  1.1432

(1.0782) (1.0295)  (1.1432)  (1.2391)  (.8882)  (1.1432)
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lesser degree, this also shows up in table 12. This sort
of instability is somewhat discouraging and again points
to the need for careful interpretation of the multilevel
model solutions at the local level. Because the global solu-
tion generally would not be known, this evaluation ad-
mittedly would be subjective and unreliable —especially
if the standard of comparison tended to be local optima,
which may have no direct relationship with the global
optima.

Tables 12 and 13 indicate the potential instabilities that
could occur in even a relatively optimistic situation. To
indicate a more complete picture of the potential local
planning unit instabilities, table 14 presents the solution
value ratios for outputs and costs with all nine budget
and price vector combinations, for a selected (represent-
ative) local planning unit. The solution values for the
given local planning unit from the multilevel model dif-
fer from the global solution values by as much as a fac-
tor of 10. The local solution values in the multilevel
model also appear to be particularly unstable when the
extreme relative timber prices are taken in combination
with one of the more extreme global budget constraints.

Conclusions

The (Bartlett-Wong) multilevel modeling approach
tested here does not appear to closely emulate a global
optimization in terms of local level output solution values
or budget allocations across local planning units.
Regional output solution values are closely approximated
only in the more optimistic cases. Yet, with moderate
relative prices, the multilevel model comes very close to
the global model in terms of total output solution values
and, especially, in terms of overall optimality. In the tests
discussed, the objective functions were a variety of
weighted summations of outputs; therefore, stating that
optimality is closely approximated implies that the
multilevel model is able to locate “points” that are close
to the true production possibilities frontier implied in
the global model.

The only obvious way to interpret these results is that
there are, in the global model tested, many ways to alter
local level solutions that do not significantly affect global
optimality (as measured by the given objective function).
This implies that the multilevel model may be tenable
in analyzing national production possibilities, but may
lead to local level resource allocations that are not truly
efficient relative to the local resource allocations that
would result from a single-level global optimization. It
is apparent that the multilevel optimization approach
tested here could lead to undiscovered resource misallo-
cations at the lower levels of the given planning system.
Again, the multilevel approach is only suggested for
cases where a single-level global optimization is not prag-
matically possible.

Given these conclusions, and the fact that optimiza-
tion problems that cannot be handled with a single,
global model are likely to persist, it would appear that
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renewable resource agencies might consider developing
the capability to pursue the Kornai and Liptak (1965) ap-
proach. The Bartlett-Wong approach evaluated here
shows impressive capabilities at the highest level of the
model; but because the allocations to lower levels seem
to be suspect, it is not a universal solution. To employ
a model along the lines suggested by Kornai and Liptak,
the agency involved would need to have all lower level
models operational during the same period of time, and
communication channels would have to be opened to
support the iterations between higher and lower levels.
Until then, the Bartlett-Wong approach seems to have
the potential to reliably address at least part of the prob-
lem, and encourages the general sorts of lower level
models and communication lines that would be neces-
sary for the Kornai and Liptak approach.

In applying the Bartlett-Wong approach, the findings
in this report would suggest first, that the integer pro-
gramming approach appears to perform very nearly as
well as the linear programming approach (in the upper
level model) in terms of approximating global optima.
Because it treats lower level alternatives discretely, it is
more reliable. An approach has been presented that
allows solution of relatively large integer programs; biit
if a great many alternatives are included, an integer solu-
tion approach may not be possible. In this case, the linear
programming approach to the upper level model appears
to be a reasonable alternative.

Second, it is important to the performance of the
Bartlett-Wong approach that the local planning units
develop alternatives with prices and other variables (that
are not used in global constraints) as close as possible
to those that will eventually be used in the upper level
model. This means that the direction of local planning
analyses would not be toward defining the absolute limits
of production or toward generating the widest possible
range of alternatives. Instead, it would mean that the
more information the national planning authority can
provide to the local planners ahead of time, the more the
local alternatives could focus on the relevant range of
alternatives, and the more effective the Bartlett-Wong ap-
proach would be.

Third, if one purpose of local planning efforts is to sup-
port an analysis such as the Bartlett-Wong model, then
the results reported here suggest that systematic varia-
tion in the implied budget requirements across local
alternatives is more important than determining a variety
of output sets on a given production frontier. This con-
clusion almost certainly results from the fact that the test
case was formulated to address the problem of allocating
a global budget to local planning units. If a different in-
put or output constraint (or group thereof) is common
to the local planning units, then parallel conclusions are
likely to be drawn. If local planning units do not generate
alternatives in a systematic manner, then there is no
guarantee that the needed variation in the key variables
will exist in the resultant alternatives. With this varia-
tion in key variables, the Bartlett-Wong approach appears
to perform well (at the national level), even with a rather
limited number of alternatives for each local planning
unit.
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Appendix 1

Detailed Description of Global Model (NIMRUM)

The land classification system used in NIMRUM was
based on Kuchler’s (1965) Potential Natural Vegetation
scheme with the addition of one vegetation type that
Kuchler did not include. This type, ‘‘mountain
meadows,” was included because of its large impact on
western range production. To avoid confusion, the land
classifications were renamed ‘‘potential natural com-
munities”’ (PNC). Within each PNC, the land base was
separated by ownership, productivity class, and condi-
tion class designations (table A1). Each of these designa-
tions had four possible classifications, giving a total of
64 possible resource units (RU) for each PNC. The RU
was the basic land management unit for the NIMRUM
model. These RU’s are analagous to the TYPE I and II
lands in table 1. Outputs and costs per acre were as-
sumed to be the same for an RU independent of where
the specific land parcel was located.

The management options for each RU were defined
as a combination of practices seeking a specific level of
management (ML) for each of three output groups. The
output groups were timber, range, and wildlife. Timber
has six possible ML'’s (1 to 6), range has five possible
ML’s (A to E), and wildlife has three possible ML’s (1
to 3). The definition of each of these levels is briefly
presented in table A2. A combination of three ML's was
called a management triplet. A subset of the 73 possible
management triplets was selected by the interdiscipli-
nary teams for each RU. E level range management ex-
cludes, by definition, any active management for the
other outputs. In general, the ML triplets were selected
for each PNC and then for each RU. Thus, RU’s within
a PNC had the same options or a subset of the options
chosen for that PNC. Most PNC’s had about 10 manage-
ment triplets specified.

After the management level triplets had been selected,
specific practices were selected for each RU to attain
each desired management triplet. The management
triplets were simply used to organize management op-

Table A1.—Land classification system within a PNC.

Ownership
Code Ownership
1 National Forest System
2 Natural Resource Lands (BLM)
3 Other Federal
4 Non-Federal
Productivity Class
Code Forested PNC’s Non-Forested PNC’s
1 120 + ft.%ac./yr. High
2 85-110 ft.3/ac./yr. Moderately High
3 50-84 ft.3/ac./yr. Moderately Low
4 0-49 ft.3/ac./yr. Low
Condition Class
Code Forested Non-Forested
1 Non-stocked Good
2 Seedlings and Saplings Fair
3 Poles Poor
4 Sawtimber Very Poor

Table A2.—Management level designations.

Range Management Level

A - Environmental management without livestock

B - Environmental management with livestock

C - Extensive management of environment and livestock
D - Intensive management of environment and livestock
E - Maximum management of environment and livestock

Timber Management Level

1 - No commercial use

2 - Minimal management (high-grading)

3 - Harvest and assure regeneration

4 - Harvest, assure regeneration, and commercial thin

5 - Harvest, assure proper stocking, and competition removal

6 - Harvest, assure proper stocking and competition removal, and fertilizing, and/or
tree improvement

Wildlife Management Level
1 - No management

2 - Vegetation manipulation
3 - Vegetation manipulation and placement of structures
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tions; these designations are somewhat artificial because
of the jointness of the renewable resource production
system. That is, practices designated for one output type
actually affect the production of other outputs. The prac-
tices allowed are presented in table A3 by output classes.

After each management triplet was defined by specific
practices, the interdisciplinary team predicted the quan-
tity of outputs that would be expected. These formed the
columns of the linear programming A-matrix (analagous
to table 1). There were 13 outputs in NIMRUM,; but only
two outputs were included in this study—cubic feet of
wood harvested and animal unit months of domestic
forage grazing.

The NIMRUM model does not address scheduling pro-
blems directly. Information was collected on the amount
of time that an RU with a given management triplet
would be in specified condition classes. The practices
and outputs data originally generated were the average
levels over the condition classes. A program was writ-
ten to convert the production and cost information from
average per year for the condition classes into averages
based on a 50-year planning horizon. A particular 50-year
schedule is assumed for each management triplet in each
RU. Thus, NIMRUM is an average-year static model.
This planning horizon was chosen because the legislative
mandate for RPA specifies a 50-year planning period.

Table A3.—Management practices by target output group.

Range Management Practice

Units/100 M acres

Fertilization M acres
Irrigation M acres
Water control M acres
Mechanical vegetation control (low cost) M acres
Mechanical vegetation control (high cost) M acres
Vegetation manipulation - chemical M acres
Vegetation manipulation - biological M acres
Vegetation manipulation - fire M acres
Debris disposal M acres
Mechanical soil treatment M acres
Seeding M acres
Rodent control M acres
Insect and disease control M acres
Small water development Sites
Large water development Sites
Fence Miles
Timber thinning M acres
Timber Management Practice
Planting M acres
Direct seeding M acres
Site prep. for natural regeneration M acres
Site prep. for planting and seeding M acres
Animal control for reforestation M acres
Animal control for timber stand improvement M acres
Precommercial thin M acres
Release and weeding M acres
Fertilization of established stands M acres
Seed production areas M acres
Selection and care of superior trees M acres
Prescribed burning to control understory M acres
Access roads for timber production Miles
Cutting method-shelterwood and seed tree M acres
Cutting method-salvage M acres
Cutting method-clearcutting M acres
Cutting method-commercial thinning M acres
Cutting method-selection M acres
Cutting method-selective M acres
Wildlife Management Practice

Water developments - upland Sites
Seeding and planting M acres
Liming and fertilizing M acres
Fencing Miles
Prescribed burning - uplands M acres
Clearing M acres
Brush and shrub management-mechanical M acres
Brush and shrub management-chemical M acres
Brush and shrub management-biological M acres
Pruning M acres
Thinning - release M acres
Mechanical soil treatment M acres
Dens and nest structures Structures
Perch and nest structures Structures
Brushpiles and covers Brushpiles
Streambank stabilizers Sites
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Appendix 2
Mathematical Description of the Test Case Models

The only pervasive difference among models is the por-
tion and level of aggregation of the land base used. The
objective function for all three models is the same, to
maximize weighted outputs. The production constraints
are analogous and are only used to transfer outputs to
the objective function. The inputs, budget and land, are
analogous in all three models.

The superscript asterisk indicates that upper level
model land unit definitions are being used. Absence of
the superscripted asterisk indicates that lower level
model land definitions are used. For example, the
subscript i identifies specific resource units in one of the
local planning unit models. In contrast, i* represents the
land base for one of the local planning units.

The algebraic representations along with definitions
for subscripts and variables is:

Upper Level Model Algebraic Formulation

2
Maximize: L X Wi, Tip (Objective function)
k= p=1

It

Subiect to: E ‘. ]E—l Pi"‘i"‘p Xi'i'_Tkp =0 Vk,p
(Production accounting rows)
6k J*
Y Y ¥ Gy Xu<B
k=4 i*=1 j*=1 ')
(Budget constraint)
]*
'21 Xjsje = 1 ¥Yi* (Unity constraints)
j*=
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Definition of Variables

Subscnpts

i  Represents the resource units (unique land
types) for the lower level models.
Represents the relevant lower level models for
the k* region.
j  Represents the options for management of each
resource unit.
Represents the solutions within each lower level

i*

model.

k  Represents the Forest Service region, k=4, 5,
or 6.

p Represents the products considered by the
model—wood harvest and domestic AUM
production.

Variables

B = The amount of budget available.

B.. = The budget allocation for the i*th lower level
model.

C, = The cost of managing 1 acre of resource unit
i under management level j.

C.. = The cost for managing all of the lower level
model i* under lower level solution j*.

I, = The number of resource units in lower level

. model i*.

I, = The number of lower level models in the k®
region.

J; = The number of management levels available for
land unit i in lower level model i*.

J* = The number of lower level solutions for each
lower level model.

L, = The total number of acres of resource unit i.

s = The number of acres available in resource unit
i of lower level model i* and region k.

4, = The output of product p from resource unit i
managed in management level j.

P.., = The output of product p from local planning
unit i* under management j*.

T,, = A variable to transfer the output from region k
for product p from the production accounting
rows to the objective function.

W,, = The weight associated with a unit of product p
produced in region k. These weights can be
viewed as relative prices.

X; = The number of acres of resource unit i in
managment level j chosen by the model.

X.. = The proportion of the land base for lower level

planning unit i* that is allocated to lower level
solution j*.

The number of acres in the global model that
were selected for management level j from re-
source unit i in lower level model i* of region k.
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U.S. Department of Agriculture
Forest Service

Rocky Mountain Forest and
Range Experiment Station

The Rocky Mountain Station is one of eight
regional experiment stations, plus the Forest
Products Laboratory and the Washington Office
Staff, that make up the Forest Service research
organization.

RESEARCH FOCUS

Research programs at the Rocky Mountain
Station are coordinated with area universities and
with other institutions. Many studies are
conducted on a cooperative basis to accelerate
solutions to problems involving range, water,
wildlife and fish habitat, human and community
development, timber, recreation, protection, and
multiresource evaluation.

RESEARCH LOCATIONS

Research Work Units of the Rocky Mountain
Station are operated in cooperation with
universities in the following cities:

Albuquerque, New Mexico
Flagstaff, Arizona

Fort Collins, Colorado*
Laramie, Wyoming
Lincoln, Nebraska

Rapid City, South Dakota
Tempe, Arizona

*Station Headquarters: 240 W. Prospect St., Fort Collins, CO 80526



